forked from koc-lab/scGraPhT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph_construct.py
64 lines (47 loc) · 2.47 KB
/
graph_construct.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
import torch.nn.functional as F
def genegene(expr_mat):
expr_tensor = torch.tensor(expr_mat, dtype=torch.float)
normed_genes = F.normalize(expr_tensor, p=2, dim=0) #normalize all gene columns
GG_tensor = torch.matmul(normed_genes.T, normed_genes)
return GG_tensor
def cellgene(expr_mat, n_bins):
CG_tensor = torch.tensor(expr_mat, dtype=torch.float) / n_bins
return CG_tensor
def cellcell(expr_mat, connection_type="cosim"):
expr_tensor = torch.tensor(expr_mat, dtype=torch.float)
normed_cells = F.normalize(expr_tensor, p=2, dim=1) #normalize all cells individually
CC_tensor = torch.matmul(normed_cells, normed_cells.T)
#CC_tensor[CC_tensor < threshold] = 0 ## we should change this threshold to a learnable parameter between 0-1, 0.7 is just yer doldurmaca
if connection_type=="cosim":
return CC_tensor
elif connection_type=="order5":
# Number of cells
num_cells = CC_tensor.shape[0]
# Percentage of neighbors to connect (5%)
percent_neighbors = 0.05
num_neighbors = int(num_cells * percent_neighbors)
# Create a mask to zero out the connections that are not in the top 5% of neighbors
mask = torch.zeros_like(CC_tensor)
for i in range(num_cells):
# Get the similarities for the i-th cell
similarities = CC_tensor[i]
# Find the indices of the top 5% neighbors (excluding the cell itself)
topk_indices = torch.topk(similarities, num_neighbors + 1).indices # +1 to include the cell itself
topk_indices = topk_indices[topk_indices != i][:num_neighbors] # Exclude the cell itself
# Set the mask for the top 5% neighbors
mask[i, topk_indices] = 1
# Apply the mask to the adjacency matrix
CC_tensor_top5 = CC_tensor * mask
return CC_tensor_top5
elif connection_type=="sum5":
# Number of cells
num_cells = CC_tensor.shape[0]
# Percentage of neighbors to connect (5%)
percent_neighbors= 0.05
for i in range(num_cells):
similarities = CC_tensor[i]
similarity_total= torch.sum(similarities)
percentile=similarity_total*percent_neighbors
CC_tensor[i][CC_tensor[i]<percentile]=0
return CC_tensor