Skip to content

Latest commit

 

History

History
28 lines (24 loc) · 2.08 KB

README.md

File metadata and controls

28 lines (24 loc) · 2.08 KB

Text-Relational Graph Neural Networks (Text-RGNNs) for Text Classification

This repository contains the implementation of Text-Relational Graph Neural Networks (Text-RGNNs) presented in the paper Text-RGNNs: Relational Modeling for Heterogeneous Text Graphs published in IEEE Signal Processing Letters. The model leverages heterogeneous graph neural networks to capture complex relationships in text data, significantly improving performance on benchmark datasets.

Evaluation Results for Best Models with All Splits

Train Percentages

Dataset Split 1% 5% 10% 20% 100%
cola train 32.33 44.79 53.71 63.62 70.15
val 26.49 47.22 51.80 63.17 69.66
test 38.14 47.73 56.31 61.94 68.30
mr train 85.65 87.16 88.04 90.71 92.38
val 83.58 86.49 87.43 89.96 91.62
test 83.91 86.41 87.51 88.35 89.98
ohsumed train 68.90 77.99 82.28 85.28 92.28
val 59.32 70.54 71.08 75.00 81.16
test 49.45 65.52 63.29 67.33 72.86
R8 train 97.79 98.16 97.05 97.70 98.80
val 97.13 98.83 97.78 96.61 97.70
test 96.48 97.81 97.44 97.76 98.86
R52 train 94.57 97.20 97.06 97.38 98.82
val 91.32 96.92 96.70 94.62 96.02
test 87.46 93.89 95.06 95.44 96.85
SST2 train 88.60 91.09 92.78 93.57 95.45
val 88.77 91.38 92.89 93.49 95.37
test 90.60 91.74 93.69 94.38 96.28