forked from CRIPAC-DIG/TextING
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
236 lines (191 loc) · 7.99 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import numpy as np
import pickle as pkl
import scipy.sparse as sp
from scipy.sparse.linalg.eigen.arpack import eigsh
import sys
import random
import re
from tqdm import tqdm
# import sparse
def parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def sample_mask(idx, l):
"""Create mask."""
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool)
def load_data(dataset_str):
"""
Loads input data from gcn/data directory
ind.dataset_str.x => the feature vectors and adjacency matrix of the training instances as list;
ind.dataset_str.tx => the feature vectors and adjacency matrix of the test instances as list;
ind.dataset_str.allx => the feature vectors and adjacency matrix of both labeled and unlabeled training instances
(a superset of ind.dataset_str.x) as list;
ind.dataset_str.y => the one-hot labels of the labeled training instances as numpy.ndarray object;
ind.dataset_str.ty => the one-hot labels of the test instances as numpy.ndarray object;
ind.dataset_str.ally => the labels for instances in ind.dataset_str.allx as numpy.ndarray object;
All objects above must be saved using python pickle module.
:param dataset_str: Dataset name
:return: All data input files loaded (as well the training/test data).
"""
names = ['x_adj', 'x_embed', 'y', 'tx_adj', 'tx_embed', 'ty', 'allx_adj', 'allx_embed', 'ally']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
objects.append(pkl.load(f))
x_adj, x_embed, y, tx_adj, tx_embed, ty, allx_adj, allx_embed, ally = tuple(objects)
# train_idx_ori = parse_index_file("data/{}.train.index".format(dataset_str))
# train_size = len(train_idx_ori)
train_adj = []
train_embed = []
val_adj = []
val_embed = []
test_adj = []
test_embed = []
for i in range(len(y)):
adj = x_adj[i].toarray()
embed = np.array(x_embed[i])
train_adj.append(adj)
train_embed.append(embed)
for i in range(len(y), len(ally)): #train_size):
adj = allx_adj[i].toarray()
embed = np.array(allx_embed[i])
val_adj.append(adj)
val_embed.append(embed)
for i in range(len(ty)):
adj = tx_adj[i].toarray()
embed = np.array(tx_embed[i])
test_adj.append(adj)
test_embed.append(embed)
train_adj = np.array(train_adj)
val_adj = np.array(val_adj)
test_adj = np.array(test_adj)
train_embed = np.array(train_embed)
val_embed = np.array(val_embed)
test_embed = np.array(test_embed)
train_y = np.array(y)
val_y = np.array(ally[len(y):len(ally)]) # train_size])
test_y = np.array(ty)
return train_adj, train_embed, train_y, val_adj, val_embed, val_y, test_adj, test_embed, test_y
def sparse_to_tuple(sparse_mx):
"""Convert sparse matrix to tuple representation."""
def to_tuple(mx):
if not sp.isspmatrix_coo(mx):
mx = mx.tocoo()
coords = np.vstack((mx.row, mx.col)).transpose()
values = mx.data
shape = mx.shape
return coords, values, shape
if isinstance(sparse_mx, list):
for i in range(len(sparse_mx)):
sparse_mx[i] = to_tuple(sparse_mx[i])
else:
sparse_mx = to_tuple(sparse_mx)
return sparse_mx
def coo_to_tuple(sparse_coo):
return (sparse_coo.coords.T, sparse_coo.data, sparse_coo.shape)
def preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
max_length = max([len(f) for f in features])
for i in tqdm(range(features.shape[0])):
feature = np.array(features[i])
pad = max_length - feature.shape[0] # padding for each epoch
feature = np.pad(feature, ((0,pad),(0,0)), mode='constant')
features[i] = feature
return np.array(list(features))
def normalize_adj(adj):
"""Symmetrically normalize adjacency matrix."""
rowsum = np.array(adj.sum(1))
with np.errstate(divide='ignore'):
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = np.diag(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt)
def preprocess_adj(adj):
"""Preprocessing of adjacency matrix for simple GCN model and conversion to tuple representation."""
max_length = max([a.shape[0] for a in adj])
mask = np.zeros((adj.shape[0], max_length, 1)) # mask for padding
for i in tqdm(range(adj.shape[0])):
adj_normalized = normalize_adj(adj[i]) # no self-loop
pad = max_length - adj_normalized.shape[0] # padding for each epoch
adj_normalized = np.pad(adj_normalized, ((0,pad),(0,pad)), mode='constant')
mask[i,:adj[i].shape[0],:] = 1.
adj[i] = adj_normalized
return np.array(list(adj)), mask # coo_to_tuple(sparse.COO(np.array(list(adj)))), mask
def construct_feed_dict(features, support, mask, labels, placeholders):
"""Construct feed dictionary."""
feed_dict = dict()
feed_dict.update({placeholders['labels']: labels})
feed_dict.update({placeholders['features']: features})
feed_dict.update({placeholders['support']: support})
feed_dict.update({placeholders['mask']: mask})
feed_dict.update({placeholders['num_features_nonzero']: features[1].shape})
return feed_dict
def chebyshev_polynomials(adj, k):
"""Calculate Chebyshev polynomials up to order k. Return a list of sparse matrices (tuple representation)."""
print("Calculating Chebyshev polynomials up to order {}...".format(k))
adj_normalized = normalize_adj(adj)
laplacian = sp.eye(adj.shape[0]) - adj_normalized
largest_eigval, _ = eigsh(laplacian, 1, which='LM')
scaled_laplacian = (2. / largest_eigval[0]) * laplacian - sp.eye(adj.shape[0])
t_k = list()
t_k.append(sp.eye(adj.shape[0]))
t_k.append(scaled_laplacian)
def chebyshev_recurrence(t_k_minus_one, t_k_minus_two, scaled_lap):
s_lap = sp.csr_matrix(scaled_lap, copy=True)
return 2 * s_lap.dot(t_k_minus_one) - t_k_minus_two
for i in range(2, k+1):
t_k.append(chebyshev_recurrence(t_k[-1], t_k[-2], scaled_laplacian))
return sparse_to_tuple(t_k)
def loadWord2Vec(filename):
"""Read Word Vectors"""
vocab = []
embd = []
word_vector_map = {}
file = open(filename, 'r')
for line in file.readlines():
row = line.strip().split(' ')
if(len(row) > 2):
vocab.append(row[0])
vector = row[1:]
length = len(vector)
for i in range(length):
vector[i] = float(vector[i])
embd.append(vector)
word_vector_map[row[0]] = vector
print('Loaded Word Vectors!')
file.close()
return vocab, embd, word_vector_map
def clean_str(string):
"""
Tokenization/string cleaning for all datasets except for SST.
Original taken from https://github.com/yoonkim/CNN_sentence/blob/master/process_data.py
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\'s", " \'s", string)
string = re.sub(r"\'ve", " \'ve", string)
string = re.sub(r"n\'t", " n\'t", string)
string = re.sub(r"\'re", " \'re", string)
string = re.sub(r"\'d", " \'d", string)
string = re.sub(r"\'ll", " \'ll", string)
string = re.sub(r",", " , ", string)
string = re.sub(r"!", " ! ", string)
string = re.sub(r"\(", " \( ", string)
string = re.sub(r"\)", " \) ", string)
string = re.sub(r"\?", " \? ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()
def clean_str_sst(string):
"""
Tokenization/string cleaning for the SST dataset
"""
string = re.sub(r"[^A-Za-z0-9(),!?\'\`]", " ", string)
string = re.sub(r"\s{2,}", " ", string)
return string.strip().lower()