-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcombined.py
390 lines (321 loc) · 17.7 KB
/
combined.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# LIBRARIES - DETECT.PY
import argparse
import os
import sys
import seaborn
import torch
import torchvision
import torch.backends.cudnn as cudnn
from pathlib import Path
# IMPORTED LIBRARIES - YOLO DIRECTORY
FILE = Path(__file__).resolve()
ROOT = FILE.parents[0] # YOLOv5 root directory
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT)) # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative
from models.common import DetectMultiBackend
from utils.datasets import IMG_FORMATS, VID_FORMATS, LoadImages, LoadStreams
from utils.general import (LOGGER, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
increment_path, non_max_suppression, print_args, scale_coords, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, time_sync
# LIBRARIES - MEASUREMENT
import cv2
import pandas as pd
import numpy as np
import imutils
import mediapipe as mp
from scipy.spatial import distance as dist
from imutils import perspective
from imutils import contours
from google.protobuf.json_format import MessageToDict
# BUILT-IN WEBCAM INITIALISATION
webcam = cv2.VideoCapture(0)
# MODEL INITIALISATION
mp_hands = mp.solutions.hands
hands = mp_hands.Hands(
static_image_mode=False,
model_complexity=1,
min_detection_confidence=0.75,
min_tracking_confidence=0.75,
max_num_hands=2)
# INITIALISATION
@torch.no_grad()
def run(
weights=ROOT / 'E:/Study/Intake Jan 2022/MVI - Machine Mission and Intelligence/Assignment MVI/yolov5/content/yolov5/runs/train/yolov5s_results/weights/best.pt', # model.pt path(s)
source=ROOT / '0', # file/dir/URL/glob, 0 for webcam
data=ROOT / 'E:/Study/Intake Jan 2022/MVI - Machine Mission and Intelligence/Assignment MVI/yolov5/content/yolov5/glove-defect-measurement-11/data.yaml', # dataset.yaml path
imgsz=(640, 640), # inference size (height, width)
conf_thres=0.25, # confidence threshold
iou_thres=0.45, # NMS IOU threshold
max_det=1000, # maximum detections per image
device='', # cuda device, i.e. 0 or 0,1,2,3 or cpu
view_img=False, # show results
save_txt=False, # save results to *.txt
save_conf=False, # save confidences in --save-txt labels
save_crop=False, # save cropped prediction boxes
nosave=False, # do not save images/videos
classes=None, # filter by class: --class 0, or --class 0 2 3
agnostic_nms=False, # class-agnostic NMS
augment=False, # augmented inference
visualize=False, # visualize features
update=False, # update all models
project=ROOT / 'runs/detect', # save results to project/name
name='exp', # save results to project/name
exist_ok=False, # existing project/name ok, do not increment
line_thickness=3, # bounding box thickness (pixels)
hide_labels=False, # hide labels
hide_conf=False, # hide confidences
half=False, # use FP16 half-precision inference
dnn=False, # use OpenCV DNN for ONNX inference
):
source = str(source)
save_img = not nosave and not source.endswith('.txt') # save inference images
is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
if is_url and is_file:
source = check_file(source) # download
# DIRECTORIES
save_dir = increment_path(Path(project) / name, exist_ok=exist_ok) # increment run
(save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True) # make dir
# LOAD MODEL
device = select_device(device)
model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
stride, names, pt = model.stride, model.names, model.pt
imgsz = check_img_size(imgsz, s=stride) # check image size
myvideo = cv2.VideoCapture(0)
ret, myframe = myvideo.read()
# DATALOADER
if webcam:
view_img = check_imshow()
cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt)
bs = len(dataset) # batch_size
else:
dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt)
bs = 1 # batch_size
vid_path, vid_writer = [None] * bs, [None] * bs
livefeed_name = "GLOVE DEFECT DETECTION & MEASUREMENT"
cv2.namedWindow(livefeed_name)
# SLIDERS IN WINDOWS - ADJUSTING ACCORDING TO THE VIDEO FEED
cv2.createTrackbar("THRESHOLD", livefeed_name, 61, 255, tbar)
cv2.createTrackbar("KERNAL", livefeed_name, 5, 27, tbar)
cv2.createTrackbar("ITERATIONS", livefeed_name, 0, 10, tbar)
# RUN INFERENCE
model.warmup(imgsz=(1 if pt else bs, 3, *imgsz)) # warmup
dt, seen = [0.0, 0.0, 0.0], 0
#ret, myframe = myvideo.read()
for path, im, im0s, vid_cap, s in dataset:
t1 = time_sync()
im = torch.from_numpy(im).to(device)
im = im.half() if model.fp16 else im.float() # uint8 to fp16/32
im /= 255 # 0 - 255 to 0.0 - 1.0
if len(im.shape) == 3:
im = im[None] # EXPAND FOR BATCH DIMENTIONS
t2 = time_sync()
dt[0] += t2 - t1
# Inference
visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
pred = model(im, augment=augment, visualize=visualize)
t3 = time_sync()
dt[1] += t3 - t2
# NMS
pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
dt[2] += time_sync() - t3
# PROCESS PREDICTIONS
for i, det in enumerate(pred): # per image
seen += 1
if webcam: # batch_size >= 1
p, im0, frame = path[i], im0s[i].copy(), dataset.count
s += f'{i}: '
else:
p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
p = Path(p) # to Path
save_path = str(save_dir / p.name) # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt
s += '%gx%g ' % im.shape[2:] # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]] # normalization gain whwh
imc = im0.copy() if save_crop else im0 # for save_crop
annotator = Annotator(im0, line_width=line_thickness, example=str(names))
if len(det):
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(im.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string
# Write results
for *xyxy, conf, cls in reversed(det):
if save_txt: # Write to file
xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist() # normalized xywh
line = (cls, *xywh, conf) if save_conf else (cls, *xywh) # label format
with open(txt_path + '.txt', 'a') as f:
f.write(('%g ' * len(line)).rstrip() % line + '\n')
if save_img or save_crop or view_img: # Add bbox to image
c = int(cls) # integer class
label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
annotator.box_label(xyxy, label, color=colors(c, True))
if save_crop:
save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
feed = im0.copy()
window_resize = resize_window(feed)
# BGR --> RGB
feed_rgb = cv2.cvtColor(window_resize, cv2.COLOR_BGR2RGB)
# PROCESSING THE IMAGE
processed_feed = hands.process(feed_rgb)
# IF HANDS ARE PRESENT ON VIEWFINDER
if processed_feed.multi_hand_landmarks:
# BOTH HANDS ARE PRESENT
if len(processed_feed.multi_handedness) == 2:
cv2.putText(window_resize, 'PLEASE PUT UP ONE HAND ONLY.', (20, 50),
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
(170, 51, 106), 2)
# ONE OF THE HANDS ARE PRESENT
else:
for i in processed_feed.multi_handedness:
hand_orientation = MessageToDict(i)[
'classification'][0]['label']
if hand_orientation == 'Left':
# DISPLAY 'LEFT' HAND
cv2.putText(window_resize, 'ORIENTATION: LEFT', (20, 50),
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
(170, 51, 106), 2)
if hand_orientation == 'Right':
# DISPLAY 'RIGHT' HAND
cv2.putText(window_resize, 'ORIENTATION: RIGHT', (20, 50),
cv2.FONT_HERSHEY_SIMPLEX, 0.6,
(170, 51, 106), 2)
th = cv2.getTrackbarPos("THRESHOLD", livefeed_name)
ret, th1 = cv2.threshold(window_resize, th, 255, cv2.THRESH_BINARY)
k = cv2.getTrackbarPos("KERNAL", livefeed_name)
k1 = np.ones((k, k), np.uint8) # square image kernel used for erosion
itr = cv2.getTrackbarPos("ITERATIONS", livefeed_name)
feed_dilation = cv2.dilate(th1, k1, iterations=itr)
feed_erosion = cv2.erode(feed_dilation, k1, iterations=itr) # refines all edges in the binary image
feed_opening = cv2.morphologyEx(feed_erosion, cv2.MORPH_OPEN, k1)
feed_closing = cv2.morphologyEx(feed_opening, cv2.MORPH_CLOSE, k1)
feed_closing = cv2.cvtColor(feed_closing, cv2.COLOR_BGR2GRAY)
# SEARCH AND FIND THE CONTOURS IN THE IMAGE
contours, hierarchy = cv2.findContours(feed_closing, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
feed_closing = cv2.cvtColor(feed_closing, cv2.COLOR_GRAY2RGB)
cv2.drawContours(feed_closing, contours, -1, (128, 255, 0), 1)
# FOCUS ON ONLY THE LARGEST OUTLINE BY AREA
list_areas = [] # HOLD ALL AREAS
for contour in contours:
a = cv2.contourArea(contour)
list_areas.append(a)
max_area = max(list_areas)
max_area_index = list_areas.index(max_area) # INDEX OF THE LARGEST AREA
c = contours[max_area_index - 1]
cv2.drawContours(feed_closing, [c], 0, (0, 0, 255), 1)
# COMPUTING ROTATED BOUNDING BOX OF THE CONTOUR
original_feed = window_resize.copy()
box = cv2.minAreaRect(c)
box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box)
box = np.array(box, dtype="int")
# ORDER OF THE POINTS IN THE CONTOUR
# DIRECTION: TOP: LEFT AND RIGHT, AND BOTTOM: LEFT AND RIGHT
# DRAW OUTLINE
# BOX
box = perspective.order_points(box)
cv2.drawContours(original_feed, [box.astype("int")], -1, (0, 255, 0), 1)
# LOOP OVER ORI POINTS AND DRAW BOX
for (x, y) in box:
cv2.circle(original_feed, (int(x), int(y)), 5, (0, 0, 255), -1)
# UNPACK THE ORDERED BOUNDING BOX
(tl, tr, br, bl) = box
# COMPUTE MIDPOINT
(tltrX, tltrY) = midpoint(tl, tr)
(blbrX, blbrY) = midpoint(bl, br)
(tlblX, tlblY) = midpoint(tl, bl)
(trbrX, trbrY) = midpoint(tr, br)
# DRAW MIDPOINTS
cv2.circle(original_feed, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1)
cv2.circle(original_feed, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1)
cv2.circle(original_feed, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1)
cv2.circle(original_feed, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1)
# CONNET THE MIDPOINT TOWARDS THE EXTREMITIES
cv2.line(original_feed, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)), (255, 0, 255), 1)
cv2.line(original_feed, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)), (255, 0, 255), 1)
cv2.drawContours(original_feed, [c], 0, (0, 0, 255), 1)
# COMPUTE EUCLIDEAN DIST BETWEEN THE MIDPOINTS
dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY))
dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY))
# COMPUTE SIZE OF OBJECT compute the size of the object
pixelsPerMetric = 1 # more to do here to get actual measurements that have meaning in the real world
dimA = dA / pixelsPerMetric
dimB = dB / pixelsPerMetric
# DRAWING OBJ SIZE
cv2.putText(original_feed, "{:.1f}Width mm".format(dimA), (int(tltrX - 100), int(tltrY - 100)),
cv2.FONT_HERSHEY_SIMPLEX, 0.65,
(255,165,0), 2)
cv2.putText(original_feed, "{:.1f}Height mm".format(dimB), (int(trbrX + 100), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX,
0.65,
(255,165,0), 2)
# COMPUTE CENTER OF CONTOUR
M = cv2.moments(c)
cX = int(safe_div(M["m10"], M["m00"]))
cY = int(safe_div(M["m01"], M["m00"]))
# DRAW CONTOUR AND CENTER
cv2.circle(original_feed, (cX, cY), 5, (255, 255, 255), -1)
cv2.putText(original_feed, "center", (cX - 20, cY - 20), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
cv2.imshow(livefeed_name, original_feed)
#cv2.imshow('', feed_closing)
if cv2.waitKey(30) >= 0:
showLive = False
LOGGER.info(f'{s}Done. ({t3 - t2:.3f}s)')
def parse_opt():
parser = argparse.ArgumentParser()
parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'E:/Study/Intake Jan 2022/MVI - Machine Mission and Intelligence/Assignment MVI/yolov5/content/yolov5/runs/train/yolov5s_results/weights/best.pt', help='model path(s)')
parser.add_argument('--source', type=str, default=ROOT / '0', help='file/dir/URL/glob, 0 for webcam')
parser.add_argument('--data', type=str, default=ROOT / 'E:/Study/Intake Jan 2022/MVI - Machine Mission and Intelligence/Assignment MVI/yolov5/content/yolov5/glove-defect-measurement-11/data.yaml', help='(optional) dataset.yaml path')
parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--view-img', action='store_true', help='show results')
parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
parser.add_argument('--augment', action='store_true', help='augmented inference')
parser.add_argument('--visualize', action='store_true', help='visualize features')
parser.add_argument('--update', action='store_true', help='update all models')
parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
parser.add_argument('--name', default='exp', help='save results to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
opt = parser.parse_args()
opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand
print_args(vars(opt))
return opt
def main(opt):
check_requirements(exclude=('tensorboard', 'thop'))
run(**vars(opt))
# TRACKBAR INITIALISATION
def tbar(x):
pass
# ERROR HANDLING
def safe_div(x, y):
if y == 0: return 0
return x / y
# RESIZING THE LIVE FEED WINDOW
def resize_window(frame, percent=80):
width = int(frame.shape[1] * percent / 100)
height = int(frame.shape[0] * percent / 100)
dim = (width, height)
return cv2.resize(frame, dim, interpolation=cv2.INTER_AREA)
def midpoint(ptA, ptB):
return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5)
if __name__ == "__main__":
opt = parse_opt()
main(opt)