-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathget_latent.py
61 lines (52 loc) · 2.58 KB
/
get_latent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import os
import argparse
from src.model import AutoEncoder
from src.loader import load_images, normalize_images
from src.utils import initialize_exp, bool_flag, attr_flag
from torch.autograd import Variable
DATA_PATH = './data'
def get_params():
parser = argparse.ArgumentParser(description='Images autoencoder')
parser.add_argument("--images_filename", type=str, default="images_256_256.pth",
help="Images name")
parser.add_argument("--ae", type=str, default="./models/best_accu_ae.pth",
help="Images name")
parser.add_argument("--img_sz", type=int, default=256,
help="Image sizes (images have to be squared)")
parser.add_argument("--img_fm", type=int, default=3,
help="Number of feature maps (1 for grayscale, 3 for RGB)")
parser.add_argument("--attr", type=attr_flag, default="Race.5",
help="Attributes to classify")
parser.add_argument("--instance_norm", type=bool_flag, default=False,
help="Use instance normalization instead of batch normalization")
parser.add_argument("--init_fm", type=int, default=32,
help="Number of initial filters in the encoder")
parser.add_argument("--max_fm", type=int, default=512,
help="Number maximum of filters in the autoencoder")
parser.add_argument("--n_layers", type=int, default=6,
help="Number of layers in the encoder / decoder")
parser.add_argument("--n_skip", type=int, default=0,
help="Number of skip connections")
parser.add_argument("--deconv_method", type=str, default="convtranspose",
help="Deconvolution method")
parser.add_argument("--hid_dim", type=int, default=512,
help="Last hidden layer dimension for discriminator / classifier")
parser.add_argument("--dec_dropout", type=float, default=0.,
help="Dropout in the decoder")
params = parser.parse_args()
return params
def main():
params = get_params()
print('Loading images...')
images = torch.load(os.path.join(DATA_PATH, params.images_filename))
print('Normalizing images...')
images_norm = normalize_images(images)
print('Loading model...')
ae = torch.load(params.ae).eval()
print('Encoding images...')
images_encoded = ae.encode(images_norm)
print("Saving encoded images to %s ..." % DATA_PATH)
torch.save(images_encoded[-1], 'images_512_4_4.pth')
if __name__ == '__main__':
main()