-
Notifications
You must be signed in to change notification settings - Fork 72
/
Copy pathtranslate.py
executable file
·255 lines (207 loc) · 7.87 KB
/
translate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import argparse
import sys
import codecs
from operator import itemgetter
import torch
from simple_nmt.data_loader import DataLoader
import simple_nmt.data_loader as data_loader
from simple_nmt.models.seq2seq import Seq2Seq
from simple_nmt.models.transformer import Transformer
def define_argparser():
p = argparse.ArgumentParser()
p.add_argument(
'--model_fn',
required=True,
help='Model file name to use'
)
p.add_argument(
'--gpu_id',
type=int,
default=-1,
help='GPU ID to use. -1 for CPU. Default=%(default)s'
)
p.add_argument(
'--batch_size',
type=int,
default=128,
help='Mini batch size for parallel inference. Default=%(default)s'
)
p.add_argument(
'--max_length',
type=int,
default=255,
help='Maximum sequence length for inference. Default=%(default)s'
)
p.add_argument(
'--n_best',
type=int,
default=1,
help='Number of best inference result per sample. Default=%(default)s'
)
p.add_argument(
'--beam_size',
type=int,
default=5,
help='Beam size for beam search. Default=%(default)s'
)
p.add_argument(
'--lang',
type=str,
default=None,
help='Source language and target language. Example: enko'
)
p.add_argument(
'--length_penalty',
type=float,
default=1.2,
help='Length penalty parameter that higher value produce shorter results. Default=%(default)s',
)
config = p.parse_args()
return config
def read_text(batch_size=128):
# This method gets sentences from standard input and tokenize those.
lines = []
sys.stdin = codecs.getreader("utf-8")(sys.stdin.detach())
for line in sys.stdin:
if line.strip() != '':
lines += [line.strip().split(' ')]
if len(lines) >= batch_size:
yield lines
lines = []
if len(lines) > 0:
yield lines
def to_text(indice, vocab):
# This method converts index to word to show the translation result.
lines = []
for i in range(len(indice)):
line = []
for j in range(len(indice[i])):
index = indice[i][j]
if index == data_loader.EOS:
# line += ['<EOS>']
break
else:
line += [vocab.itos[index]]
line = ' '.join(line)
lines += [line]
return lines
def is_dsl(train_config):
# return 'dsl_lambda' in vars(train_config).keys()
return not ('rl_n_epochs' in vars(train_config).keys())
def get_vocabs(train_config, config, saved_data):
if is_dsl(train_config):
assert config.lang is not None
if config.lang == train_config.lang:
is_reverse = False
else:
is_reverse = True
if not is_reverse:
# Load vocabularies from the model.
src_vocab = saved_data['src_vocab']
tgt_vocab = saved_data['tgt_vocab']
else:
src_vocab = saved_data['tgt_vocab']
tgt_vocab = saved_data['src_vocab']
return src_vocab, tgt_vocab, is_reverse
else:
# Load vocabularies from the model.
src_vocab = saved_data['src_vocab']
tgt_vocab = saved_data['tgt_vocab']
return src_vocab, tgt_vocab, False
def get_model(input_size, output_size, train_config, is_reverse=False):
# Declare sequence-to-sequence model.
if 'use_transformer' in vars(train_config).keys() and train_config.use_transformer:
model = Transformer(
input_size,
train_config.hidden_size,
output_size,
n_splits=train_config.n_splits,
n_enc_blocks=train_config.n_layers,
n_dec_blocks=train_config.n_layers,
dropout_p=train_config.dropout,
)
else:
model = Seq2Seq(
input_size,
train_config.word_vec_size,
train_config.hidden_size,
output_size,
n_layers=train_config.n_layers,
dropout_p=train_config.dropout,
)
if is_dsl(train_config):
if not is_reverse:
model.load_state_dict(saved_data['model'][0])
else:
model.load_state_dict(saved_data['model'][1])
else:
model.load_state_dict(saved_data['model']) # Load weight parameters from the trained model.
model.eval() # We need to turn-on the evaluation mode, which turns off all drop-outs.
return model
if __name__ == '__main__':
sys.stdout = codecs.getwriter("utf-8")(sys.stdout.detach())
config = define_argparser()
# Load saved model.
saved_data = torch.load(
config.model_fn,
map_location='cpu',
)
# Load configuration setting in training.
train_config = saved_data['config']
src_vocab, tgt_vocab, is_reverse = get_vocabs(train_config, config, saved_data)
# Initialize dataloader, but we don't need to read training & test corpus.
# What we need is just load vocabularies from the previously trained model.
loader = DataLoader()
loader.load_vocab(src_vocab, tgt_vocab)
input_size, output_size = len(loader.src.vocab), len(loader.tgt.vocab)
model = get_model(input_size, output_size, train_config, is_reverse)
# Put models to device if it is necessary.
if config.gpu_id >= 0:
model.cuda(config.gpu_id)
with torch.no_grad():
# Get sentences from standard input.
for lines in read_text(batch_size=config.batch_size):
# Since packed_sequence must be sorted by decreasing order of length,
# sorting by length in mini-batch should be restored by original order.
# Therefore, we need to memorize the original index of the sentence.
lengths = [len(line) for line in lines]
original_indice = [i for i in range(len(lines))]
sorted_tuples = sorted(
zip(lines, lengths, original_indice),
key=itemgetter(1),
reverse=True,
)
sorted_lines = [sorted_tuples[i][0] for i in range(len(sorted_tuples))]
lengths = [sorted_tuples[i][1] for i in range(len(sorted_tuples))]
original_indice = [sorted_tuples[i][2] for i in range(len(sorted_tuples))]
# Converts string to list of index.
x = loader.src.numericalize(
loader.src.pad(sorted_lines),
device='cuda:%d' % config.gpu_id if config.gpu_id >= 0 else 'cpu'
)
# |x| = (batch_size, length)
if config.beam_size == 1:
y_hats, indice = model.search(x)
# |y_hats| = (batch_size, length, output_size)
# |indice| = (batch_size, length)
output = to_text(indice, loader.tgt.vocab)
sorted_tuples = sorted(zip(output, original_indice), key=itemgetter(1))
output = [sorted_tuples[i][0] for i in range(len(sorted_tuples))]
sys.stdout.write('\n'.join(output) + '\n')
else:
# Take mini-batch parallelized beam search.
batch_indice, _ = model.batch_beam_search(
x,
beam_size=config.beam_size,
max_length=config.max_length,
n_best=config.n_best,
length_penalty=config.length_penalty,
)
# Restore the original_indice.
output = []
for i in range(len(batch_indice)):
output += [to_text(batch_indice[i], loader.tgt.vocab)]
sorted_tuples = sorted(zip(output, original_indice), key=itemgetter(1))
output = [sorted_tuples[i][0] for i in range(len(sorted_tuples))]
for i in range(len(output)):
sys.stdout.write('\n'.join(output[i]) + '\n')