forked from CellProfiler/CellProfiler-plugins
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexporttocellh5.py
614 lines (547 loc) · 27.9 KB
/
exporttocellh5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
'''<b>ExportToCellH5</b> exports measurements, objects and object relationships,
and images to the CellH5 data format.
<hr>
<h4>File structure</h4>
In multiprocessing-mode, CellProfiler will create satellite .cellh5 files that
are linked to the one that you specify using this module. The only thing
to note is that you must keep all .cellh5 files that are generated together
if you move them to a new folder.
'''
import os
import tempfile
import h5py
import numpy as np
import scipy.ndimage
import cellprofiler.module as cpm
import cellprofiler.measurement as cpmeas
import cellprofiler.setting as cps
from cellprofiler.measurement import R_PARENT
from cellprofiler.setting import YES, NO
from cellprofiler.modules._help import \
USING_METADATA_TAGS_REF, USING_METADATA_HELP_REF, \
IO_FOLDER_CHOICE_HELP_TEXT, IO_WITH_METADATA_HELP_TEXT
import cellh5
import cellh5.cellh5write
import numpy as np
OFF_OBJECTS_COUNT = 0
OFF_IMAGES_COUNT = 1
COLORS = [("Red", "0xFF0000"),
("Green", "0x00FF00"),
("Blue", "0x0000FF")]
class ExportToCellH5(cpm.Module):
#
# TODO: model z and t. Currently, CellProfiler would analyze each
# stack plane independently. I think the easiest way to handle
# z and t would be to add them to the site path if they are
# used in the experiment (e.g. a time series would have a
# path of "/plate/well/site/time")
#
# I can add two more optional metadata keys that would let
# users capture this.
#
# The more-complicated choice would be to store the data in a
# stack which would mean reworking the indices in every segmentation
# after the first. There are some legacy measurements that are
# really object numbers, so these would require a lot of work
# to get right. Also, the resulting segmentations are a little
# artificial since they seem to say that every object is one
# pixel thick in the T or Z direction.
#
module_name = "ExportToCellH5"
variable_revision_number = 1
category = ["File Processing"]
SUBFILE_KEY = "subfile"
IGNORE_METADATA = "None"
def create_settings(self):
'''Create the settings for the ExportToCellH5 module'''
self.directory = cps.DirectoryPath(
"Output file location",
doc="""
This setting lets you choose the folder for the output files.
%(IO_FOLDER_CHOICE_HELP_TEXT)s
""" % globals())
def get_directory_fn():
'''Get the directory for the CellH5 file'''
return self.directory.get_absolute_path()
def set_directory_fn(path):
dir_choice, custom_path = self.directory.get_parts_from_path(path)
self.directory.join_parts(dir_choice, custom_path)
self.file_name = cps.FilenameText(
"Output file name", "DefaultOut.ch5",
get_directory_fn=get_directory_fn,
set_directory_fn=set_directory_fn,
metadata=True,
browse_msg="Choose CellH5 file",
mode=cps.FilenameText.MODE_APPEND,
exts=[("CellH5 file (*.cellh5)", "*.ch5"),
("HDF5 file (*.h5)", "*.h5"),
("All files (*.*", "*.*")],
doc="""
This setting lets you name your CellH5 file. If you choose an
existing file, CellProfiler will add new data to the file
or overwrite existing locations.
<p>%(IO_WITH_METADATA_HELP_TEXT)s %(USING_METADATA_TAGS_REF)s.
For instance, if you have a metadata tag named
"Plate", you can create a per-plate folder by selecting one the subfolder options
and then specifying the subfolder name as "\g<Plate>". The module will
substitute the metadata values for the current image set for any metadata tags in the
folder name.%(USING_METADATA_HELP_REF)s.</p>
""" % globals())
self.overwrite_ok = cps.Binary(
"Overwrite existing data without warning?", False,
doc="""
Select <i>%(YES)s</i> to automatically overwrite any existing data
for a site. Select <i>%(NO)s</i> to be prompted first.
If you are running the pipeline on a computing cluster,
select <i>%(YES)s</i> unless you want execution to stop because you
will not be prompted to intervene. Also note that two instances
of CellProfiler cannot write to the same file at the same time,
so you must ensure that separate names are used on a cluster.
""" % globals())
self.repack = cps.Binary(
"Repack after analysis", True,
doc="""
This setting determines whether CellProfiler in multiprocessing mode
repacks the data at the end of analysis. If you select <i>%(YES)s</i>,
CellProfiler will combine all of the satellite files into a single
file upon completion. This option requires some extra temporary disk
space and takes some time at the end of analysis, but results in
a single file which may occupy less disk space. If you select
<i>%(NO)s</i>, CellProfiler will create a master file using the
name that you give and this file will have links to individual
data files that contain the actual data. Using the data generated by
this option requires that you keep the master file and the linked
files together when copying them to a new folder.
""" % globals())
self.plate_metadata = cps.Choice(
"Plate metadata", [], value="Plate",
choices_fn=self.get_metadata_choices,
doc="""
This is the metadata tag that identifies the plate name of
the images for the current cycle. Choose <i>None</i> if
your assay does not have metadata for plate name. If your
assay is slide-based, you can use a metadata item that identifies
the slide as the choice for this setting and set the well
and site metadata items to <i>None</i>.""")
self.well_metadata = cps.Choice(
"Well metadata", [], value="Well",
choices_fn=self.get_metadata_choices,
doc="""This is the metadata tag that identifies the well name
for the images in the current cycle. Choose <i>None</i> if
your assay does not have metadata for the well.""")
self.site_metadata = cps.Choice(
"Site metadata", [], value="Site",
choices_fn=self.get_metadata_choices,
doc=
"""This is the metadata tag that identifies the site name
for the images in the current cycle. Choose <i>None</i> if
your assay doesn't divide wells up into sites or if this
tag is not required for other reasons.""")
self.divider = cps.Divider()
self.wants_to_choose_measurements = cps.Binary(
"Choose measurements?", False,
doc="""
This setting lets you choose between exporting all measurements or
just the ones that you choose. Select <i>%(YES)s</i> to pick the
measurements to be exported. Select <i>%(NO)s</i> to automatically
export all measurements available at this stage of the pipeline.
""" % globals())
self.measurements = cps.MeasurementMultiChoice(
"Measurements to export",
doc="""
<i>(Used only if choosing measurements.)</i>
<br>
This setting lets you choose individual measurements to be exported.
Check the measurements you want to export.
""")
self.objects_to_export = []
self.add_objects_button = cps.DoSomething(
"Add objects to export", "Add objects",
self.add_objects)
self.images_to_export = []
self.add_image_button = cps.DoSomething(
"Add an image to export", "Add image",
self.add_image)
self.objects_count = cps.HiddenCount(self.objects_to_export)
self.images_count = cps.HiddenCount(self.images_to_export)
def add_objects(self, can_delete=True):
group = cps.SettingsGroup()
self.objects_to_export.append(group)
group.append(
"objects_name",
cps.ObjectNameSubscriber(
"Objects name", value="Nuclei",
doc="""
This setting lets you choose the objects you want to export.
<b>ExportToCellH5</b> will write the segmentation of the objects
to your CellH5 file so that they can be saved and used by other
applications that support the format.
"""))
group.append(
"Remover",
cps.RemoveSettingButton(
"Remove the objects above", "Remove",
self.objects_to_export, group))
def add_image(self, can_delete=True):
group = cps.SettingsGroup()
self.images_to_export.append(group)
group.append("image_name",
cps.ImageNameSubscriber(
"Image name", value="DNA",
doc="""
This setting lets you choose the images you want to export.
<b>ExportToCellH5</b> will write the image
to your CellH5 file so that it can be used by other
applications that support the format.
"""
))
group.append("remover",
cps.RemoveSettingButton(
"Remove the image above", "Remove",
self.objects_to_export, group))
def get_metadata_choices(self, pipeline):
columns = pipeline.get_measurement_columns(self)
choices = [self.IGNORE_METADATA]
for column in columns:
object_name, feature_name, column_type = column[:3]
if object_name == cpmeas.IMAGE and \
column_type.startswith(cpmeas.COLTYPE_VARCHAR) and \
feature_name.startswith(cpmeas.C_METADATA + "_"):
choices.append(feature_name.split("_", 1)[1])
return choices
def settings(self):
result = [
self.objects_count, self.images_count,
self.directory, self.file_name, self.overwrite_ok, self.repack,
self.plate_metadata, self.well_metadata, self.site_metadata,
self.wants_to_choose_measurements, self.measurements]
for objects_group in self.objects_to_export:
result += objects_group.pipeline_settings()
for images_group in self.images_to_export:
result += images_group.pipeline_settings()
return result
def visible_settings(self):
result = [
self.directory, self.file_name, self.overwrite_ok, self.repack,
self.plate_metadata, self.well_metadata, self.site_metadata,
self.divider, self.wants_to_choose_measurements]
if self.wants_to_choose_measurements:
result.append(self.measurements)
for group in self.objects_to_export:
result += group.visible_settings()
result.append(self.add_objects_button)
for group in self.images_to_export:
result += group.visible_settings()
result.append(self.add_image_button)
return result
def get_path_to_master_file(self, measurements):
return os.path.join(self.directory.get_absolute_path(measurements),
self.file_name.value)
def get_site_path(self, workspace, image_number):
'''Get the plate / well / site tuple that identifies a field of view
workspace - workspace for the analysis containing the metadata
measurements to be mined.
image_number - the image number for the field of view
returns a tuple which can be used for the hierarchical path
to the group for a particular field of view
'''
m = workspace.measurements
path = []
for setting in self.plate_metadata, self.well_metadata, self.site_metadata:
if setting.value == self.IGNORE_METADATA:
path.append("NA")
else:
feature = "_".join((cpmeas.C_METADATA, setting.value))
path.append(m[cpmeas.IMAGE, feature, image_number])
return tuple(path)
def get_subfile_name(self, workspace):
'''Contact the UI to find the cellh5 file to use to store results
Internally, this tells the UI to create a link from the master file
to the plate / well / site group that will be used to store results.
Then, the worker writes into that file.
'''
master_file_name = self.get_path_to_master_file(workspace.measurements)
path = self.get_site_path(
workspace,
workspace.measurements.image_set_number)
return workspace.interaction_request(
self, master_file_name, os.getpid(), path, headless_ok=True)
def handle_interaction(self, master_file, pid, path):
'''Handle an analysis worker / UI interaction
This function is used to coordinate linking a group in the master file
with a group in a subfile that is reserved for a particular
analysis worker. Upon entry, the worker should be sure to have
flushed and closed its subfile.
master_file - the master cellh5 file which has links to groups
for each field of view
pid - the process ID or other unique identifier of the worker
talking to the master
path - The combination of (Plate, Well, Site) that should be used
as the folder path to the data.
returns the name of the subfile to be used. After return, the
subfile has been closed by the UI and a link has been established
to the group named by the path.
'''
master_dict = self.get_dictionary().setdefault(master_file, {})
if pid not in master_dict:
md_head, md_tail = os.path.splitext(master_file)
subfile = "%s_%s%s" % (md_head, str(pid), md_tail)
master_dict[pid] = subfile
else:
subfile = master_dict[pid]
ch5_master = cellh5.cellh5write.CH5MasterFile(master_file, "a")
try:
ch5_master.add_link_to_coord(self._to_ch5_coord(*path), subfile)
finally:
ch5_master.close()
return subfile
def _to_ch5_coord(self, plate, well, site):
return cellh5.CH5PositionCoordinate(plate, well, site)
def run(self, workspace):
m = workspace.measurements
object_set = workspace.object_set
#
# get plate / well / site as tuple
#
path = self.get_site_path(workspace, m.image_set_number)
subfile_name = self.get_subfile_name(workspace)
### create CellH5 file
with cellh5.cellh5write.CH5FileWriter(subfile_name, mode="a") as c5_file:
### add Postion (==plate, well, site) triple
c5_pos = c5_file.add_position(self._to_ch5_coord(*path))
for ch_idx, object_group in enumerate(self.objects_to_export):
objects_name = object_group.objects_name.value
objects = object_set.get_objects(objects_name)
labels = objects.segmented
if ch_idx == 0:
### get shape of 5D cube
shape5D = (len(self.objects_to_export), 1, 1,
labels.shape[0], labels.shape[1])
dtype5D = np.uint16
### create lablel writer for incremental writing
c5_label_writer = c5_pos.add_label_image(shape=shape5D, dtype=dtype5D)
c5_label_def = cellh5.cellh5write.CH5ImageRegionDefinition()
c5_label_writer.write(labels, c=ch_idx, t=0, z=0)
c5_label_def.add_row(region_name=objects_name, channel_idx=ch_idx)
if len(self.objects_to_export) > 0:
### finalize the writer
c5_label_writer.write_definition(c5_label_def)
c5_label_writer.finalize()
n_channels = 0
max_scale = 1
max_i = 1
max_j = 1
for image_group in self.images_to_export:
image = m.get_image(image_group.image_name.value)
pixel_data = image.pixel_data
if pixel_data.ndim == 3:
n_channels += min(pixel_data.shape[2], 3)
else:
n_channels += 1
max_scale = max(image.scale, max_scale)
max_i = max(pixel_data.shape[0], max_i)
max_j = max(pixel_data.shape[1], max_j)
### get shape of 5D cube
shape5D = (n_channels, 1, 1, max_i, max_j)
for dtype in (np.uint8, np.uint16, np.uint32, np.uint64):
if max_scale <= np.iinfo(dtype).max:
dtype5D = dtype
break
### create image writer for incremental writing
c5_image_writer = c5_pos.add_image(shape=shape5D, dtype=dtype5D)
c5_image_def = cellh5.cellh5write.CH5ImageChannelDefinition()
ch_idx = 0
for image_group in self.images_to_export:
image_name = image_group.image_name.value
image = m.get_image(image_name).pixel_data
scale = m.get_image(image_name).scale
if not np.issubdtype(image.dtype, np.dtype(bool).type):
if scale == 1:
scale = max_scale
image = image * scale
if image.ndim == 3:
for c in range(min(image.shape[2], 3)):
color_name, html_color = COLORS[c]
c5_image_writer.write(
image[:, :, c].astype(dtype5D),
c=ch_idx, t=0, z=0)
c5_image_def.add_row(
channel_name="_".join((image_name, color_name)),
description="%s %s intensity" %
(image_name, color_name),
is_physical=True,
voxel_size=(1, 1, 1),
color=html_color)
ch_idx += 1
else:
c5_image_writer.write(
image.astype(dtype5D),
c=ch_idx, t=0, z=0)
c5_image_def.add_row(
channel_name=image_name,
description=image_name,
is_physical=True,
voxel_size=(1, 1, 1),
color="0xFFFFFF")
ch_idx += 1
c5_image_writer.write_definition(c5_image_def)
c5_image_writer.finalize()
columns = workspace.pipeline.get_measurement_columns(self)
if self.wants_to_choose_measurements:
to_keep = set([
(self.measurements.get_measurement_object(s),
self.measurements.get_measurement_feature(s))
for s in self.measurements.selections])
def keep(column):
return (column[0], column[1]) in to_keep
columns = filter(keep, columns)
#
# I'm breaking the data up into the most granular form so that
# it's clearer how it's organized. I'm expecting that you would
# organize it differently when actually storing.
#
### 0) extract object information (i.e. object_label_no)
### 1) extract all single cell features and write it as feature matrix (for e.g. classification)
### 2) extract Center
### 3) create artifical Bounding box... usefull for displaying it in fiji lateron
### 4) Don't see the point of features extracted on "Image" the only real and useful feature there is "Count" which can be deduced from single cell information
### 0) and 1) filter columns for cellular features
feature_cols = filter(
lambda xxx: (xxx[0] not in (cpmeas.EXPERIMENT, cpmeas.IMAGE)) and
m.has_feature(xxx[0], xxx[1]), columns)
### iterate over objects to export
for ch_idx, object_group in enumerate(self.objects_to_export):
objects_name = object_group.objects_name.value
objects = object_set.get_objects(objects_name)
### find features for that object
feature_cols_per_object = filter(lambda xxx: xxx[0] == objects_name, feature_cols)
c5_object_writer = c5_pos.add_region_object(objects_name)
object_labels = objects.indices
c5_object_writer.write(t=0, object_labels=np.array(object_labels))
c5_object_writer.write_definition()
c5_object_writer.finalize()
### iterate over all cellular feature to get feature matrix
n_features = len(feature_cols_per_object)
if n_features > 0:
feature_names = []
feature_matrix = []
for column in feature_cols_per_object:
object_name, feature_name = column[:2]
values = m[object_name, feature_name]
feature_names.append(feature_name)
feature_matrix.append(values[:, np.newaxis])
feature_matrix = np.concatenate(feature_matrix, axis=1)
c5_feature_writer = c5_pos.add_object_feature_matrix(
object_name=object_name,
feature_name="object_features",
n_features=n_features, dtype=np.float32)
c5_feature_writer.write(feature_matrix)
c5_feature_writer.write_definition(feature_names)
c5_feature_writer.finalize()
### iterate over Location to create bounding_box and center
c5_bbox = c5_pos.add_object_bounding_box(
object_name=objects_name)
if objects.count > 0:
ijv = objects.ijv
min_x = scipy.ndimage.minimum(
ijv[:, 1], ijv[:, 2], objects.indices)
max_x = scipy.ndimage.maximum(
ijv[:, 1], ijv[:, 2], objects.indices)
min_y = scipy.ndimage.minimum(
ijv[:, 0], ijv[:, 2], objects.indices)
max_y = scipy.ndimage.maximum(
ijv[:, 0], ijv[:, 2], objects.indices)
location_x = scipy.ndimage.mean(
ijv[:, 1], ijv[:, 2], objects.indices)
location_y = scipy.ndimage.mean(
ijv[:, 0], ijv[:, 2], objects.indices)
bb = np.c_[min_x, max_x, min_y, max_y]
else:
bb = np.zeros((0, 4))
location_x = np.zeros(0)
location_y = np.zeros(0)
c5_bbox.write(bb.astype(np.int32))
c5_bbox.write_definition()
c5_bbox.finalize()
c5_center = c5_pos.add_object_center(object_name=objects_name)
locations = {'x': location_x, 'y': location_y}
cent = np.column_stack(
[locations[axis] for axis in c5_center.dtype.names])
c5_center.write(cent.astype(np.int32))
c5_center.write_definition()
c5_center.finalize()
#
# The last part deals with relationships between segmentations.
# The most typical relationship is "Parent" which is explained below,
# but you can also have things like first nearest and second nearest
# neighbor or in tracking, the relationship between the segmentation
# of the previous and next frames.
#
for key in m.get_relationship_groups():
relationships = m.get_relationships(
key.module_number, key.relationship,
key.object_name1, key.object_name2,
[m.image_set_number])
for image_number1, image_number2, \
object_number1, object_number2 in relationships:
if image_number1 == image_number2 and \
key.relationship == R_PARENT:
#
# Object 1 is the parent to object 2 - this is the
# most common relationship, so if you can only record
# one, this is it. "Parent" usually means that
# the child's segmentation was seeded by the parent
# segmentation (e.g. Parent = nucleus, child = cell),
# but can also be something like Parent = cell,
# child = all organelles within the cell
#
# object_name1 is the name of the parent segmentation
# object_name2 is the name of the child segmentation
# object_number1 is the index used to label the
# parent in the parent segmentation
# object_number2 is the index used to label the
# child in the child segmentation
continue
if image_number1 != m.image_set_number:
path1 = self.get_site_path(workspace, image_number1)
else:
path1 = path
if image_number2 != m.image_set_number:
path2 = self.get_site_path(workspace, image_number2)
else:
path2 = path
#
# TODO: this is sort of extra credit, but the relationships
# relate an object in one segmentation to another.
# For tracking, these can be in different image
# sets, (e.g. the cell at time T and at time T+1).
# So, given object 1 and object 2, path1 and path2
# tell you how the objects are related between planes.
pass
def post_run(self, workspace):
if self.repack:
### to be implemented with
### ch5_master.repack()
return
measurements = workspace.measurements
fd, temp_name = tempfile.mkstemp(
suffix=".ch5",
dir=self.directory.get_absolute_path())
master_name = self.get_path_to_master_file(workspace.measurements)
src = h5py.File(master_name, "r")
dest = h5py.File(temp_name)
os.close(fd)
for key in src:
dest.copy(src[key], dest, expand_external=True)
src.close()
dest.close()
os.unlink(master_name)
os.rename(temp_name, master_name)
def prepare_settings(self, setting_values):
objects_count, images_count = [int(x) for x in setting_values[:2]]
del self.objects_to_export[:]
while len(self.objects_to_export) < objects_count:
self.add_objects()
del self.images_to_export[:]
while len(self.images_to_export) < images_count:
self.add_image()