This repository has been archived by the owner on Sep 24, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 23
/
main.py
121 lines (95 loc) · 3.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import sys
import pickle
import numpy as np
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from matplotlib.pyplot import cm
import matplotlib.mlab as mlab
from matplotlib.ticker import NullFormatter
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
from utils import *
from config import get_config
def main(config):
np.random.seed(config.random_seed)
# ensure directories are setup
prepare_dirs(config)
# load data
X_train, y_train, _, _ = load_data(config.data_dir)
# shuffle dataset
if config.shuffle:
p = np.random.permutation(len(X_train))
X_train = X_train[p]
y_train = y_train[p]
num_classes = len(np.unique(y_train))
labels = np.arange(num_classes)
# restrict to a sample because slow
mask = np.arange(config.num_samples)
X_sample = X_train[mask].squeeze()
y_sample = y_train[mask]
# grab file names for saving
file_name = name_file(config) + '.p'
v = '_v1'
if config.with_images == True:
v = '_v2'
img_name = name_file(config) + v + '.pdf'
if config.compute_embeddings:
print("X_sample: {}".format(X_sample.shape))
print("y_sample: {}".format(y_sample.shape))
# flatten images to (N, D) for feeding to t-SNE
X_sample_flat = np.reshape(X_sample, [X_sample.shape[0], -1])
# compute tsne embeddings
embeddings = TSNE(n_components=config.num_dimensions, init='pca', verbose=2).fit_transform(X_sample_flat)
# dump
pickle.dump(embeddings, open(config.data_dir + file_name, "wb"))
# else load
print("Loading embedding...")
embeddings = pickle.load(open(config.data_dir + file_name, "rb"))
print('Plotting...')
if config.num_dimensions == 3:
# safeguard
if config.with_images == True:
sys.exit("Cannot plot images with 3D plots.")
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
colors = cm.Spectral(np.linspace(0, 1, num_classes))
xx = embeddings[:, 0]
yy = embeddings[:, 1]
zz = embeddings[:, 2]
# plot the 3D data points
for i in range(num_classes):
ax.scatter(xx[y_sample==i], yy[y_sample==i], zz[y_sample==i], color=colors[i], label=labels[i], s=10)
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
ax.zaxis.set_major_formatter(NullFormatter())
plt.axis('tight')
plt.legend(loc='best', scatterpoints=1, fontsize=5)
plt.savefig(config.plot_dir + img_name, format='pdf', dpi=600)
plt.show()
# 2D plot
else:
fig = plt.figure()
ax = fig.add_subplot(111)
colors = cm.Spectral(np.linspace(0, 1, num_classes))
xx = embeddings[:, 0]
yy = embeddings[:, 1]
# plot the images
if config.with_images == True:
for i, (x, y) in enumerate(zip(xx, yy)):
im = OffsetImage(X_sample[i], zoom=0.1, cmap='gray')
ab = AnnotationBbox(im, (x, y), xycoords='data', frameon=False)
ax.add_artist(ab)
ax.update_datalim(np.column_stack([xx, yy]))
ax.autoscale()
# plot the 2D data points
for i in range(num_classes):
ax.scatter(xx[y_sample==i], yy[y_sample==i], color=colors[i], label=labels[i], s=10)
ax.xaxis.set_major_formatter(NullFormatter())
ax.yaxis.set_major_formatter(NullFormatter())
plt.axis('tight')
plt.legend(loc='best', scatterpoints=1, fontsize=5)
plt.savefig(config.plot_dir + img_name, format='pdf', dpi=600)
plt.show()
if __name__ == '__main__':
config, unparsed = get_config()
main(config)