-
Notifications
You must be signed in to change notification settings - Fork 0
/
LaplaceApproximation.m
129 lines (107 loc) · 3.56 KB
/
LaplaceApproximation.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
function [ model ] = LaplaceApproximation(hyp, para, K, X, Y)
% Copyright (c) University of Glasgow in UK - All Rights Reserved
% Author: Li Sun (Kevin) <lisunsir@gmail.com>
% Institute: University of Glasgow
% Details: Laplace Approximation for Gaussian Process Posterior Estimation
% Reference:
% 1. <Gaussian Process for Machine Learning>
% 2. <Recognising the Clothing Categories from Free-Configuration using Gaussian-Process-Based Interactive Perception>
maxIter = 50;
thres = 1e-8;
if para.c == 2
n = length(Y);
c = para.c;
% intialize latent variables f
f = zeros(n,1);
for i = 1:maxIter
% pi is p(yi|fi)
pi = 1 ./ (1 + exp(-f));
% t = (y+1)/2
t = (Y+1) / 2;
% the first order drivative of p(y,f) is ti-pi
tlogpY_f = t - pi;
% the second order drivative of p(y,f) is -pi(1-pi)
ttlogpY_f = -pi.*(1-pi);
W = diag(-ttlogpY_f);
%B = eye(size(K)) + sqrtm(W) * K * sqrtm(W);
% caculate inv(inv(K) + W) = inv_invKW
%inv_invKW = K - K * sqrtm(W) * inv(B) * sqrt(W) * K;
f_new = K * inv(eye(size(K)) + W*K) * (W * f + tlogpY_f);
error = max(abs(f-f_new));
if error <= thres
model.X = X;
model.y = Y;
model.K = K;
model.f = f;
model.W = W;
return;
else
f = f_new;
disp(['error at iter ', num2str(i), ' is: ', num2str(error)]);
end
end
end
if para.c > 2
n = length(Y);
c = para.c;
kernel = para.kernel;
[ Ybin ] = label2binary(Y);
% intialize latent variables f
f = zeros(n,c);
f = f(:);
for iter = 1:maxIter
ft = reshape(f, [n, c]);
ft = exp(ft);
Pi = ft ./ repmat(sum(ft,2), [1 c]);
Pi = Pi(:);
index = repmat(1:c, [n,1]);
index = index(:);
for ci = 1:c
Pic{ci} = diag(Pi(index==ci));
end
TT = stackVerticalMatrices(Pic);
W = diag(Pi) - TT*TT';
%% stable but slow
D = diag(Pi);
R = invBlockDiag(D,c) * TT;
if sum(sum(isnan(D))) > 0 || sum(sum(isinf(D))) > 0
model = [];
return;
end
P = invBlockDiag(eye(size(K)) + sqrtm(D)*K*sqrtm(D), c);
if sum(sum(isnan(P))) > 0 || sum(sum(isinf(P))) > 0
model = [];
return;
end
E = sqrtm(D) * P * sqrtm(D);
% inv_KinvW is inv(K+inv(W))
inv_KinvW = E - E * R * inv(R'*E*R) * R' * E; % eq. 3.47 p. 52
% KinvW_inv is inv(inv(K)+W)
inv_invKW = K - K * inv_KinvW * K; % eq. 3.45 p. 51
f_new = inv_invKW * (W*f + Ybin - Pi);
%% fast
% f_new = inv(inv(K) + W) * (W*f + Ybin - Pi);
%%
error = max(abs(f-f_new));
if iter == maxIter || error <= thres
model.X = X;
model.y = Y;
model.K = K;
model.f = f;
model.Pi = Pi;
model.W = W;
model.TT = TT;
return;
else
f = f_new;
disp(['error at iter ', num2str(iter), ' is: ', num2str(error)]);
if para.flag
scrsz = get(0,'ScreenSize');
fig2 = figure(2);
set(fig2, 'name', 'The Latent Variables of GP multi-class classification', 'Position',[575 scrsz(4) 500 400]);
imagesc(reshape(f,[n,c]));
pause(.01)
end
end
end
end