generated from GT-ZhangAcer/AI-Studio-Template
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathfaceFatModule.py
246 lines (199 loc) · 8.82 KB
/
faceFatModule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import paddlehub as hub
import cv2
import numpy as np
import math
import CVTools
face_landmark = hub.Module(name="face_landmark_localization")
def landmark_dec_fun(img_src):
# img_gray = cv2.cvtColor(img_src, cv2.COLOR_BGR2GRAY)
#
land_marks = []
#
# rects = detector(img_gray, 0)
# for i in range(len(rects)):
#
# land_marks.append(land_marks_node)
results = face_landmark.keypoint_detection(images=[img_src],
paths=None,
batch_size=1,
use_gpu=False,
output_dir='face_landmark_output',
visualization=False)
# print('emoi baidu landmark',len(results),len(results[0]))
for result in results: # one result for one pic
# print(len(result['data']))
land_marks.append(result['data'])
return land_marks[0]#one pic for one element
'''
方法: Interactive Image Warping 局部平移算法
'''
def localTranslationWarp(srcImg, startX, startY, endX, endY, radius):
ddradius = float(radius * radius)
copyImg = np.zeros(srcImg.shape, np.uint8)
copyImg = srcImg.copy()
# 计算公式中的|m-c|^2
ddmc = (endX - startX) * (endX - startX) + (endY - startY) * (endY - startY)
H, W, C = srcImg.shape
for i in range(W):
for j in range(H):
# 计算该点是否在形变圆的范围之内
# 优化,第一步,直接判断是会在(startX,startY)的矩阵框中
if math.fabs(i - startX) > radius and math.fabs(j - startY) > radius:
continue
distance = (i - startX) * (i - startX) + (j - startY) * (j - startY)
if (distance < ddradius):
# 计算出(i,j)坐标的原坐标
# 计算公式中右边平方号里的部分
ratio = (ddradius - distance) / (ddradius - distance + ddmc)
ratio = ratio * ratio
# 映射原位置
UX = i - ratio * (endX - startX)
UY = j - ratio * (endY - startY)
# 根据双线性插值法得到UX,UY的值
value = BilinearInsert(srcImg, UX, UY)
# 改变当前 i ,j的值
copyImg[j, i] = value
return copyImg
def translationFaceWarp(srcImg, startX, startY, endX, endY, radius):
ddradius = float(radius * radius)
copyImg = np.zeros(srcImg.shape, np.uint8)
copyImg = srcImg.copy()
# 计算公式中的|m-c|^2
ddmc = (endX - startX) * (endX - startX) + (endY - startY) * (endY - startY)
H, W, C = srcImg.shape
for i in range(W):
for j in range(H):
# 计算该点是否在形变圆的范围之内
# 优化,第一步,直接判断是会在(startX,startY)的矩阵框中
if math.fabs(i - startX) > radius and math.fabs(j - startY) > radius:
continue
distance = (i - startX) * (i - startX) + (j - startY) * (j - startY)
if (distance < ddradius):
# 计算出(i,j)坐标的原坐标
# 计算公式中右边平方号里的部分
ratio = (ddradius - distance) / (ddradius - distance + ddmc)
ratio = ratio * ratio
# 映射原位置
UX = i + ratio * (endX - startX)
UY = j + ratio * (endY - startY)
# 根据双线性插值法得到UX,UY的值
value = BilinearInsert(srcImg, UX, UY)
# 改变当前 i ,j的值
copyImg[j, i] = value
return copyImg
# 双线性插值法
def BilinearInsert(src, ux, uy):
w, h, c = src.shape
if c == 3:
x1 = int(ux)
x2 = x1 + 1
y1 = int(uy)
y2 = y1 + 1
part1 = src[y1, x1].astype(np.float) * (float(x2) - ux) * (float(y2) - uy)
part2 = src[y1, x2].astype(np.float) * (ux - float(x1)) * (float(y2) - uy)
part3 = src[y2, x1].astype(np.float) * (float(x2) - ux) * (uy - float(y1))
part4 = src[y2, x2].astype(np.float) * (ux - float(x1)) * (uy - float(y1))
insertValue = part1 + part2 + part3 + part4
return insertValue.astype(np.int8)
def find_biggest_face(landmarks):
areaList=[]
for landmark in landmarks:
lan=np.array(landmark)
areaList.append(np.max(lan)*np.min(lan))
print('areaList',areaList)
index=areaList.index(max(areaList))
index=0
return landmarks[index]
def swap_face(src,landmarks_node,ratio=0.8):
left_landmark = landmarks_node[3]
left_landmark_down = landmarks_node[31]
right_landmark = landmarks_node[13]
right_landmark_down = landmarks_node[31]
endPtleft = landmarks_node[33]
endPtright = landmarks_node[33]
# 计算第4个点到第6个点的距离作为瘦脸距离
r_left = math.sqrt(
(left_landmark[0] - left_landmark_down[0]) * (left_landmark[0] - left_landmark_down[0]) +
(left_landmark[1] - left_landmark_down[1]) * (left_landmark[1] - left_landmark_down[1]))
# 计算第14个点到第16个点的距离作为瘦脸距离
r_right = math.sqrt(
(right_landmark[0] - right_landmark_down[0]) * (right_landmark[0] - right_landmark_down[0]) +
(right_landmark[1] - right_landmark_down[1]) * (right_landmark[1] - right_landmark_down[1]))
r_right *=( max(0.8,ratio)+0)
r_left *=( max(0.8,ratio)+0)
print(r_right, r_left)
# 瘦左边脸
thin_image = translationFaceWarp(src, left_landmark[0], left_landmark[1], endPtleft[0],
endPtleft[1], r_left)
# thin_image = localWiderWarp(src, left_landmark[ 0], left_landmark[ 1],
# (endPtleft[ 0]+left_landmark[ 0])/2, (left_landmark[ 1]+endPtleft[ 1])/2,
# r_left)
# 瘦右边脸
thin_image = translationFaceWarp(thin_image, right_landmark[0], right_landmark[1], endPtright[0],
endPtright[1], r_right)
# thin_image = localWiderWarp(thin_image, right_landmark[ 0], right_landmark[ 1],
# (endPtright[ 0]+right_landmark[ 0])/2, (right_landmark[ 1]+endPtright[ 1])/2,
# r_left)
return thin_image
class face_morph():
def __init__(self,landmarker,cartoon_maker):
self.landmarker=landmarker
self.cartoon_maker=cartoon_maker
self.perspect_size=256
def run(self,user_bot=None,src_img=[],morph_img=[]):
landmark=[]
# user_bot.roiImg
if len(src_img)!=0:
landmarks = self.landmarker.run(src_img)
else:
img=cv2.imread(user_bot.imgPath)
landmarks = self.landmarker.run(img)
# 如果未检测到人脸关键点,就不进行瘦脸
if len(landmarks) == 0:
return user_bot
landmarks_node=find_biggest_face(landmarks)
ratio=user_bot.emoitionRatio
# for landmarks_node in landmarks:
if user_bot is not None:
morph_image = swap_face(img, landmarks_node, ratio)
# landmarks_node=np.array(landmarks_node)
inputImg = CVTools.roiChoice([landmarks_node], morph_image, self.perspect_size)
morph_image=self.cartoon_maker.process(inputImg)
else:
if len(morph_img)!=0:
inputImg=morph_img
else:
inputImg=src_img
morph_image = swap_face(inputImg, landmarks_node, ratio)
# print(cv2.imwrite('roi.jpg',user_bot.roiImg))
# print(cv2.imwrite('inputImg.jpg',inputImg))
##
if user_bot is not None:
user_bot.specialImg=morph_image
return user_bot
else:
return morph_image
# 显示
# cv2.imshow('thin', thin_image)
# cv2.imwrite('thin.jpg', thin_image)
# cv2.imwrite('mask.jpg',mask)
if __name__=='__main__':
from landmarkModule import landmarker
from cartonModule import cartoon_face
la=landmarker(False)
cm = cartoon_face(la)
cf=face_morph(la,cm)
src_img=cv2.imread('roi.jpg')
from botClass import bot
user_bot=bot()
user_bot.imgPath='pic/25033812051166452013.jpg'
# user_bot.roiCartoon=cv2.imread('inputImg.jpg')
out=cf.run(user_bot)
# print('in',image.shape,'out',out.shape)
# cv2.imwrite('../facefatter.jpg', out.specialImg)
# print('time', time.time() - t1)
#
# src = cv2.imread('a10.png')[:,:,:3]
# src = cv2.imread('wuyifan.jpg')[:,:,:3]
#
# face_thin_auto(src)