-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathAICc_PERMANOVA.R
103 lines (69 loc) · 4.15 KB
/
AICc_PERMANOVA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# Function to calculate AICc for PERMANOVA. Requires input from adonis or adonis2 {vegan}
AICc.PERMANOVA <- function(adonis.model) {
# check to see if object is an adonis model...
if (!(adonis.model$aov.tab[1,1] >= 1))
stop("object not output of adonis {vegan} ")
# Ok, now extract appropriate terms from the adonis model
# Calculating AICc using residual sum of squares (RSS) since I don't think that adonis returns something I can use as a liklihood function...
RSS <- adonis.model$aov.tab[rownames(adonis.model$aov.tab) == "Residuals", "SumsOfSqs"]
MSE <- adonis.model$aov.tab[rownames(adonis.model$aov.tab) == "Residuals", "MeanSqs"]
k <- ncol(adonis.model$model.matrix)# + 1 # add one for error variance
nn <- nrow(adonis.model$model.matrix)
# AIC : 2*k + n*ln(RSS)
# AICc: AIC + [2k(k+1)]/(n-k-1)
# based on https://en.wikipedia.org/wiki/Akaike_information_criterion;
# https://www.researchgate.net/post/What_is_the_AIC_formula;
# http://avesbiodiv.mncn.csic.es/estadistica/ejemploaic.pdf
# AIC.g is generalized version of AIC = 2k + n [Ln( 2(pi) RSS/n ) + 1]
# AIC.pi = k + n [Ln( 2(pi) RSS/(n-k) ) +1],
AIC <- 2*k + nn*log(RSS)
AIC.g <- 2*k + nn * (1 + log( 2 * pi * RSS / nn))
AIC.MSE <- 2*k + nn * log(MSE)
AIC.pi <- k + nn*(1 + log( 2*pi*RSS/(nn-k) ) )
AICc <- AIC + (2*k*(k + 1))/(nn - k - 1)
AICc.MSE <- AIC.MSE + (2*k*(k + 1))/(nn - k - 1)
AICc.pi <- AIC.pi + (2*k*(k + 1))/(nn - k - 1)
output <- list("AIC" = AIC, "AIC.g" = AIC.g, "AICc" = AICc,
"AIC.MSE" = AIC.MSE, "AICc.MSE" = AICc.MSE,
"AIC.pi" = AIC.pi, "AICc.pi" = AICc.pi, "k" = k)
return(output)
}
AICc.PERMANOVA2 <- function(adonis2.model) {
# check to see if object is an adonis2 model...
if (is.na(adonis2.model$SumOfSqs[1]))
stop("object not output of adonis2 {vegan} ")
# Ok, now extract appropriate terms from the adonis model Calculating AICc
# using residual sum of squares (RSS or SSE) since I don't think that adonis
# returns something I can use as a likelihood function... maximum likelihood
# and MSE estimates are the same when distribution is gaussian See e.g.
# https://www.jessicayung.com/mse-as-maximum-likelihood/;
# https://towardsdatascience.com/probability-concepts-explained-maximum-likelihood-estimation-c7b4342fdbb1
# So using RSS or MSE estimates is fine as long as the residuals are
# Gaussian https://robjhyndman.com/hyndsight/aic/ If models have different
# conditional likelihoods then AIC is not valid. However, comparing models
# with different error distributions is ok (above link).
RSS <- adonis2.model$SumOfSqs[ length(adonis2.model$SumOfSqs) - 1 ]
MSE <- RSS / adonis2.model$Df[ length(adonis2.model$Df) - 1 ]
nn <- adonis2.model$Df[ length(adonis2.model$Df) ] + 1
k <- nn - adonis2.model$Df[ length(adonis2.model$Df) - 1 ]
# AIC : 2*k + n*ln(RSS/n)
# AICc: AIC + [2k(k+1)]/(n-k-1)
# based on https://en.wikipedia.org/wiki/Akaike_information_criterion;
# https://www.statisticshowto.datasciencecentral.com/akaikes-information-criterion/ ;
# https://www.researchgate.net/post/What_is_the_AIC_formula;
# http://avesbiodiv.mncn.csic.es/estadistica/ejemploaic.pdf;
# https://medium.com/better-programming/data-science-modeling-how-to-use-linear-regression-with-python-fdf6ca5481be
# AIC.g is generalized version of AIC = 2k + n [Ln( 2(pi) RSS/n ) + 1]
# AIC.pi = k + n [Ln( 2(pi) RSS/(n-k) ) +1],
AIC <- 2*k + nn*log(RSS/nn)
AIC.g <- 2*k + nn * (1 + log( 2 * pi * RSS / nn))
AIC.MSE <- 2*k + nn * log(MSE)
AIC.pi <- k + nn*(1 + log( 2*pi*RSS/(nn-k) ) )
AICc <- AIC + (2*k*(k + 1))/(nn - k - 1)
AICc.MSE <- AIC.MSE + (2*k*(k + 1))/(nn - k - 1)
AICc.pi <- AIC.pi + (2*k*(k + 1))/(nn - k - 1)
output <- list("AIC" = AIC, "AICc" = AICc, "AIC.g" = AIC.g,
"AIC.MSE" = AIC.MSE, "AICc.MSE" = AICc.MSE,
"AIC.pi" = AIC.pi, "AICc.pi" = AICc.pi, "k" = k, "N" = nn)
return(output)
}