-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfastled_delay.py
168 lines (108 loc) · 3.01 KB
/
fastled_delay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
from . import *
import utime
# @file fastled_delay.h
# Utility functions and classes for managing delaycycles
# Class to ensure that a minimum amount of time has kicked since the last time run - and delay if not enough
# time has passed yet this should make sure that chipsets that have
class CMinWait(object):
def __init__(self, WAIT):
self.mLastMicros = 0
self._wait = WAIT
def wait(self):
diff = 0
while diff < self._wait:
diff = (utime.ticks_us() & 0xFFFF) - self.mLastMicros
def mark(self):
self.mLastMicros = utime.ticks_us() & 0xFFFF
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
#
# Clock cycle counted delay loop
#
# # # # # # # # # # # # # # # # # # # # # # # # # # # # # # #
# Default is now just 'nop', with special case for AVR
# ESP32 core has it's own definition of NOP, so undef it first
# ifdef ESP32
# undef NOP
# undef NOP2
# endif
# if defined(__AVR__)
# define FL_NOP __asm__ __volatile__ ("cp r0,r0\n");
# define FL_NOP2 __asm__ __volatile__ ("rjmp .+0");
# else
# define FL_NOP __asm__ __volatile__ ("nop\n");
# define FL_NOP2 __asm__ __volatile__ ("nop\n\t nop\n");
# endif
# TODO: ARM version of _delaycycles_
def __delaycycles_template(CYCLES=None):
def wrapper1(func):
def wrapper():
# _delaycycles_ARM<CYCLES / 3, CYCLES % 3>();
func(CYCLES - 1)
return wrapper
return wrapper1
# pre-instantiations for values small enough to not need the loop, as well as sanity holders
# for some negative values.
@__delaycycles_template(-10)
def delaycycles():
pass
@__delaycycles_template(-9)
def delaycycles(_):
pass
@__delaycycles_template(-8)
def delaycycles(_):
pass
@__delaycycles_template(-7)
def delaycycles(_):
pass
@__delaycycles_template(-6)
def delaycycles(_):
pass
@__delaycycles_template(-5)
def delaycycles(_):
pass
@__delaycycles_template(-4)
def delaycycles(_):
pass
@__delaycycles_template(-3)
def delaycycles(_):
pass
@__delaycycles_template(-2)
def delaycycles(_):
pass
@__delaycycles_template(-1)
def delaycycles(_):
pass
@__delaycycles_template(0)
def delaycycles():
pass
@__delaycycles_template(1)
def delaycycles(_):
FL_NOP
@__delaycycles_template(2)
def delaycycles(_):
FL_NOP2
@__delaycycles_template(3)
def delaycycles(_):
FL_NOP
FL_NOP2
@__delaycycles_template(4)
def delaycycles(_):
FL_NOP2
FL_NOP2
@__delaycycles_template(5)
def delaycycles(_):
FL_NOP2
FL_NOP2
FL_NOP
# Some timing related macros/definitions
# Macro to convert from nano-seconds to clocks and clocks to nano-seconds
# #define NS(_NS) (_NS / (1000 / (F_CPU / 1000000L)))
F_CPU_MHZ = F_CPU / 1000000
# #define NS(_NS) ( (_NS * (F_CPU / 1000000L))) / 1000
def NS(_NS):
return ((_NS * F_CPU_MHZ) + 999) / 1000
def CLKS_TO_MICROS(_CLKS):
return _CLKS / (F_CPU / 1000000)
# Macro for making sure there's enough time available
def NO_TIME(A, B, C):
return NS(A) < 3 or NS(B) < 3 or NS(C) < 6