-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbuild_lib.py
executable file
·71 lines (61 loc) · 2.62 KB
/
build_lib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python3
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import argparse
import subprocess
import os
from tvm import relay
import onnx
def build_lib(model_file, opt_level):
"""Compiles the pre-trained model with TVM"""
onnx_model = onnx.load(model_file)
shape_dict = {}
for input in onnx_model.graph.input:
shape_dict[input.name] = \
[dim.dim_value for dim in input.type.tensor_type.shape.dim]
net, params = relay.frontend.from_onnx(onnx_model, shape_dict)
target = 'llvm -target=wasm32-unknown-unknown --system-lib'
# compile the model
with relay.build_config(opt_level=opt_level):
graph, lib, params = relay.build_module.build(net, target, params=params)
# save the model artifacts
lib.save('tvmwasm.o')
lib.export_library('libtvmwasm.wasm', cc="/usr/lib/llvm-9/bin/clang++",
options=[
"--target=wasm32-wasm",
"-Wl,--no-entry",
"-Wl,--export-dynamic",
"tvm/rust/target/wasm32-unknown-unknown/release/libtvm_runtime.a",
"-nostdlib"
])
ar = os.environ.get("AR", "ar")
cmds = [ar, 'rcs', 'libtvmwasm.a', 'tvmwasm.o']
subprocess.run(cmds)
with open("tvmwasm.json", "w") as fo:
fo.write(graph)
with open("tvmwasm.params", "wb") as fo:
params_bytes = relay.save_param_dict(params)
fo.write(params_bytes)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Resnet build example')
aa = parser.add_argument
aa('model_file', type=str,
help='model file')
aa('-O', '--opt-level', type=int, default=0,
help='level of optimization. 0 is unoptimized and 3 is the highest level')
args = parser.parse_args()
build_lib(args.model_file, args.opt_level)