-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_sac_wholesession.py
159 lines (130 loc) · 4.17 KB
/
train_sac_wholesession.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
from datetime import datetime
import os
import logging
import hydra
from hydra.utils import instantiate
from omegaconf import DictConfig, OmegaConf
import pytz
import torch
from pathlib import Path
from src.policy.onestage import OneStagePolicy, OneStageHyperPolicy_with_DotScore
from src.crititc.qcritic import QCritic
from src.buffer.hyperactor import HyperActorBuffer
from src.simulator.krmb import KRMBUserResponse
from src.reader.krmb import KRMBSeqReader
from src.agent.ddpg import DDPG
from src.agent.hac import HAC
from src.utils import set_random_seed
from src.reward import get_immediate_reward
from src.crititc.sac import SoftQNetwork
from src.policy.sac import Actor
from src.agent.sac import SAC
from src.environment.wholesession import KREnvironment_WholeSession_GPU
logger = logging.getLogger(__name__)
@hydra.main(config_path="conf", config_name="actor_critic_sac", version_base="1.1")
def main(cfg: DictConfig):
# Starting logging
logging.basicConfig(level=cfg.logging.level)
# logger.info(OmegaConf.to_yaml(cfg))
output_dir = Path(hydra.core.hydra_config.HydraConfig.get().runtime.output_dir)
seed = cfg.seed
cuda = cfg.cuda
path_to_simulator_ckpt = cfg.path_to_simulator_ckpt
model_path = output_dir / "model"
uirm_log_path = output_dir / "log"
save_path = output_dir / "model"
set_random_seed(seed)
if torch.cuda.is_available():
os.environ["CUDA_VISIBLE_DEVICES"] = str(cuda)
torch.cuda.set_device(cuda)
device = f"cuda"
else:
device = "cpu"
checkpoint = torch.load("/Users/alexander.kazakov/Documents/rl_in_recsys/env/user_KRMBUserResponse_lr0.0001_reg0_nlayer2.model" + '.checkpoint', map_location=device)
reader_stats = checkpoint["reader_stats"]
reader = KRMBSeqReader(
**cfg.reader
)
cfg.simulator.model_path = path_to_simulator_ckpt
simulator = KRMBUserResponse(
**cfg.simulator,
reader_stats=reader_stats,
logger=logger
)
env = KREnvironment_WholeSession_GPU(
max_step_per_episode=20,
initial_temper=20,
device=device,
uirm_log_path=uirm_log_path,
slate_size=6,
episode_batch_size=32,
item_correlation=0.2,
single_response=True,
reader=reader,
model_path=path_to_simulator_ckpt,
model=simulator,
reader_stats=reader_stats,
from_load=True
)
policy = Actor(
# encoder
model_path=str(model_path),
loss='bce',
l2_coef=0.0,
state_user_latent_dim=16,
state_item_latent_dim=16,
state_transformer_enc_dim=32,
state_transformer_n_head=4,
state_transformer_d_forward=64,
state_transformer_n_layer=3,
state_dropout_rate=0.1,
device=device,
env=env,
logger=logger,
# network
policy_noise_var=0.1,
policy_noise_clip=1.0,
policy_do_effect_action_explore=False,
policy_action_hidden=[256, 64],
)
policy.to(device)
buffer = HyperActorBuffer(
buffer_size=100_000,
device=device
)
agent = SAC(
gamma=0.9,
reward_func=get_immediate_reward,
n_iter=[20_000],
train_every_n_step=1,
start_policy_train_at_step=100,
initial_epsilon=0.01,
final_epsilon=0.01,
elbow_epsilon=0.1,
explore_rate=1.0,
do_explore_in_train=False,
check_episode=10,
save_episode=200,
save_path=str(save_path),
actor_lr=0.0001,
actor_decay=0.00001,
batch_size=32,
critic_lr=0.001,
critic_decay=0.00001,
target_mitigate_coef=0.01,
device=device,
env=env,
actor=policy,
buffer=buffer,
logger=logger
)
try:
agent.train()
except KeyboardInterrupt:
logger.info("Early stop manually")
exit_here = input("Exit completely without evaluation? (y/n) (default n):")
if exit_here.lower().startswith('y'):
logger.info(os.linesep + '-' * 20 + ' END: ' + datetime.now(pytz.timezone('Europe/Moscow')) + ' ' + '-' * 20)
exit(1)
if __name__ == "__main__":
main()