-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsac_torch.py
230 lines (182 loc) · 8.77 KB
/
sac_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import os
import torch as T
import torch.nn.functional as F
import numpy as np
from buffer import ReplayBuffer
from networks import ActorNetwork, CriticNetwork, ValueNetwork
def linear_scorer(action_emb, item_emb, item_dim):
fc_weight = action_emb[:, :item_dim].view(-1, 1, item_dim)
fc_bias = action_emb[:, -1].view(-1, 1)
output = T.sum(fc_weight * item_emb, dim=-1) + fc_bias
return output
class Agent():
def __init__(self, encoder=None, buffer=None, alpha=0.0003, beta=0.0003, input_dims=[8],
env=None, gamma=0.99, action_dim=2, item_dim=2, slate_size=1, max_size=1000000, tau=0.005,
layer1_size=256, layer2_size=256, batch_size=256, reward_scale=2):
self.encoder = encoder
self.gamma = gamma
self.tau = tau
self.memory = buffer
self.batch_size = batch_size
self.action_dim = action_dim
self.item_dim = item_dim
self.slate_size = slate_size
self.actor = ActorNetwork(alpha, input_dims, action_dim=action_dim,
name='actor', max_action=env.action_space)
self.critic_1 = CriticNetwork(beta, input_dims, action_dim=action_dim,
name='critic_1')
self.critic_2 = CriticNetwork(beta, input_dims, action_dim=action_dim,
name='critic_2')
self.value = ValueNetwork(beta, input_dims, name='value')
self.target_value = ValueNetwork(beta, input_dims, name='target_value')
self.scale = reward_scale
self.update_network_parameters(tau=1)
def get_user_state(self, observation):
feed_dict = {}
feed_dict.update(observation['user_profile'])
feed_dict.update(observation['user_history'])
return self.encoder.get_forward(feed_dict)
def get_score(self, hyper_action, candidate_item_enc, item_dim):
'''
Deterministic mapping from hyper-action to effect-action (rec list)
'''
# (B, L)
scores = linear_scorer(hyper_action, candidate_item_enc, item_dim)
return scores
def get_regularization(self, *modules):
reg = 0
for m in modules:
for p in m.parameters():
reg += T.mean(p * p)
return reg
def choose_action(self, feed_dict):
observation = feed_dict['observation']
state_dict = self.get_user_state(observation)
user_state = state_dict['state']
candidates = feed_dict['candidates']
# epsilon = feed_dict['epsilon']
# do_explore = feed_dict['do_explore']
# is_train = feed_dict['is_train']
batch_wise = feed_dict['batch_wise']
B = user_state.shape[0]
actions, _ = self.actor.sample_normal(user_state, reparameterize=False)
candidate_item_enc, reg = self.encoder.get_item_encoding(
candidates['item_id'], {k[3:]: v for k, v in candidates.items() if k != 'item_id'}, B if batch_wise else 1)
scores = self.get_score(actions, candidate_item_enc, self.item_dim)
_, indices = T.topk(scores, k=self.slate_size, dim=1)
action = candidates['item_id'][indices].detach()
action_scores = T.gather(scores, 1, indices).detach()
reg += self.get_regularization(self.actor)
out_dict = {
'state': state_dict['state'],
'preds': action_scores,
'action': actions,
'indices': indices,
'effect_action': action,
'all_preds': scores,
'reg': reg + state_dict['reg']
}
return out_dict
def remember(self, state, action, reward, new_state, done):
self.memory.store_transition(state, action, reward, new_state, done)
def update_network_parameters(self, tau=None):
if tau is None:
tau = self.tau
target_value_params = self.target_value.named_parameters()
value_params = self.value.named_parameters()
target_value_state_dict = dict(target_value_params)
value_state_dict = dict(value_params)
for name in value_state_dict:
value_state_dict[name] = tau*value_state_dict[name].clone() + \
(1-tau)*target_value_state_dict[name].clone()
self.target_value.load_state_dict(value_state_dict)
def save_models(self):
print('.... saving models ....')
self.actor.save_checkpoint()
self.value.save_checkpoint()
self.target_value.save_checkpoint()
self.critic_1.save_checkpoint()
self.critic_2.save_checkpoint()
def load_models(self):
print('.... loading models ....')
self.actor.load_checkpoint()
self.value.load_checkpoint()
self.target_value.load_checkpoint()
self.critic_1.load_checkpoint()
self.critic_2.load_checkpoint()
def learn(self, env):
# if self.memory.mem_cntr < self.batch_size:
# return
# state, action, reward, new_state, done = self.memory.sample_buffer(self.batch_size)
observation, policy_output, user_feedback, done_mask, next_observation = self.memory.sample(self.batch_size)
reward = user_feedback['reward']
done = done_mask
state_ = next_observation
state = observation
action = policy_output['action']
# reward = T.tensor(reward, dtype=T.float).to(self.actor.device)
# done = T.tensor(done).to(self.actor.device)
# state_ = T.tensor(new_state, dtype=T.float).to(self.actor.device)
# state = T.tensor(state, dtype=T.float).to(self.actor.device)
# action = T.tensor(action, dtype=T.float).to(self.actor.device)
value = self.value(policy_output['state']).view(-1)
input_dict = {
'observation': next_observation,
'candidates': env.get_candidate_info(next_observation),
# 'epsilon': epsilon,
# 'do_explore': do_explore,
# 'is_train': is_train,
'batch_wise': False
}
next_policy_output = self.choose_action(input_dict)
value_ = self.target_value(next_policy_output['state']).view(-1)
value_[done] = 0.0
# value = self.value(state).view(-1)
# value_ = self.target_value(state_).view(-1)
# value_[done] = 0.0
actions, log_probs = self.actor.sample_normal(policy_output['state'], reparameterize=False)
log_probs = log_probs.view(-1)
q1_new_policy = self.critic_1.forward(policy_output['state'], actions)
q2_new_policy = self.critic_2.forward(policy_output['state'], actions)
critic_value = T.min(q1_new_policy, q2_new_policy)
critic_value = critic_value.view(-1)
# actions, log_probs = self.actor.sample_normal(state, reparameterize=False)
# log_probs = log_probs.view(-1)
# q1_new_policy = self.critic_1.forward(state, actions)
# q2_new_policy = self.critic_2.forward(state, actions)
# critic_value = T.min(q1_new_policy, q2_new_policy)
# critic_value = critic_value.view(-1)
self.value.optimizer.zero_grad()
value_target = critic_value - log_probs
value_loss = 0.5 * F.mse_loss(value, value_target)
value_loss.backward(retain_graph=True)
self.value.optimizer.step()
actions, log_probs = self.actor.sample_normal(policy_output['state'], reparameterize=False)
log_probs = log_probs.view(-1)
q1_new_policy = self.critic_1.forward(policy_output['state'], actions)
q2_new_policy = self.critic_2.forward(policy_output['state'], actions)
critic_value = T.min(q1_new_policy, q2_new_policy)
critic_value = critic_value.view(-1)
# actions, log_probs = self.actor.sample_normal(state, reparameterize=True)
# log_probs = log_probs.view(-1)
# q1_new_policy = self.critic_1.forward(state, actions)
# q2_new_policy = self.critic_2.forward(state, actions)
# critic_value = T.min(q1_new_policy, q2_new_policy)
# critic_value = critic_value.view(-1)
actor_loss = log_probs - critic_value
actor_loss = T.mean(actor_loss)
self.actor.optimizer.zero_grad()
actor_loss.backward(retain_graph=True)
self.actor.optimizer.step()
self.critic_1.optimizer.zero_grad()
self.critic_2.optimizer.zero_grad()
q_hat = self.scale*reward + self.gamma*value_
q1_old_policy = self.critic_1.forward(policy_output['state'], action).view(-1)
q2_old_policy = self.critic_2.forward(policy_output['state'], action).view(-1)
critic_1_loss = 0.5 * F.mse_loss(q1_old_policy, q_hat)
critic_2_loss = 0.5 * F.mse_loss(q2_old_policy, q_hat)
critic_loss = critic_1_loss + critic_2_loss
critic_loss.backward()
self.critic_1.optimizer.step()
self.critic_2.optimizer.step()
self.update_network_parameters()