-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_sac.py
212 lines (168 loc) · 6.06 KB
/
main_sac.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# import pybullet_envs
# import gym
from copy import deepcopy
import logging
import numpy as np
from sac_torch import Agent
from utils import plot_learning_curve
# from gym import wrappers
import torch as T
from buffer import ReplayBuffer, BaseBuffer
from encoder import Encoder
from src.environment.wholesession import KREnvironment_WholeSession_GPU
from src.simulator.krmb import KRMBUserResponse
from src.reader.krmb import KRMBSeqReader
from src.reward import get_immediate_reward
logger = logging.getLogger(__name__)
if __name__ == '__main__':
device = 'cuda:0' if T.cuda.is_available() else 'cpu'
reader = KRMBSeqReader(
user_meta_file = "dataset/user_features_Pure_fillna.csv",
item_meta_file = "dataset/video_features_basic_Pure_fillna.csv",
max_hist_seq_len = 100,
val_holdout_per_user = 5,
test_holdout_per_user = 5,
meta_file_sep = ',',
train_file = "dataset/log_session_4_08_to_5_08_Pure.csv",
val_file = '',
test_file = '',
n_worker = 4,
data_separator = ','
)
model_path = "env/user_KRMBUserResponse_lr0.0001_reg0_nlayer2.model"
simulator = KRMBUserResponse(
model_path = model_path,
loss = "bce",
l2_coef = 0.0,
user_latent_dim = 32,
item_latent_dim = 32,
enc_dim = 64,
attn_n_head = 4,
transformer_d_forward = 64,
transformer_n_layer = 2,
state_hidden_dims = [128],
scorer_hidden_dims = [128, 32],
dropout_rate = 0.1,
reader_stats=reader.get_statistics(),
logger=logger,
device=device
)
slate_size = 6
env = KREnvironment_WholeSession_GPU(
max_step_per_episode=20,
initial_temper=20,
device=device,
uirm_log_path="log/",
slate_size=slate_size,
episode_batch_size=4,
item_correlation=0.2,
single_response=True,
reader=reader,
model_path=model_path,
model=simulator,
reader_stats=reader.get_statistics(),
from_load=False
)
state_user_latent_dim = 16
state_item_latent_dim = 16
enc_dim = 32
state_dim = 3 * enc_dim
action_dim = 32
encoder = Encoder(
model_path=model_path,
loss='bce',
l2_coef=0.0,
state_user_latent_dim=state_user_latent_dim,
state_item_latent_dim=state_item_latent_dim,
state_transformer_enc_dim=enc_dim,
state_transformer_n_head=4,
state_transformer_d_forward=64,
state_transformer_n_layer=3,
state_dropout_rate=0.1,
device=device,
reader_stats=reader.get_statistics(),
logger=logger
)
buffer = BaseBuffer(
buffer_size=100,
device=device,
state_dim=state_dim,
action_dim=action_dim
)
agent = Agent(
encoder=encoder,
buffer=buffer,
input_dims=[state_dim],
env=env,
action_dim=action_dim,
item_dim=enc_dim,
slate_size=slate_size
)
n_games = 250
# uncomment this line and do a mkdir tmp && mkdir video if you want to
# record video of the agent playing the game.
#env = wrappers.Monitor(env, 'tmp/video', video_callable=lambda episode_id: True, force=True)
# filename = 'recsys.png'
# figure_file = 'plots/' + filename
# best_score = 0
# score_history = []
# load_checkpoint = False
# if load_checkpoint:
# agent.load_models()
# env.render(mode='human')
# before training
env.reset()
buffer.reset(env)
reward_func = get_immediate_reward
def get_reward(user_feedback):
user_feedback['immediate_response_weight'] = env.response_weights
R = reward_func(user_feedback).detach()
return R
observation = deepcopy(env.current_observation)
for i in range(50):
done = False
current_sum_reward = T.zeros(env.episode_batch_size).to(T.float).to(device)
with T.no_grad():
input_dict = {
'observation': observation,
'candidates': env.get_candidate_info(observation),
# 'epsilon': epsilon,
# 'do_explore': do_explore,
# 'is_train': is_train,
'batch_wise': False
}
action = agent.choose_action(input_dict)
action_dict = {'action': action['indices']}
new_observation, user_feedback, update_info = env.step(action_dict)
R = get_reward(user_feedback)
user_feedback['reward'] = R
current_sum_reward = current_sum_reward + R
done_mask = user_feedback['done']
if T.sum(done_mask) > 0:
print(f"avg_total_reward: {current_sum_reward[done_mask].mean().item()}")
# print(f"max_total_reward: {current_sum_reward[done_mask].max().item()}")
# print(f"min_total_reward: {current_sum_reward[done_mask].min().item()}")
current_sum_reward[done_mask] = 0
# print(f"avg_reward: {R.mean().item()}")
# print(f"reward_variance: {T.var(R).item()}")
# for i,resp in enumerate(env.response_types):
# print(f"{resp}_rate: {user_feedback['immediate_response'][:,:,i].mean().item()}")
buffer.update(observation, action, user_feedback, update_info['updated_observation'])
observation = new_observation
agent.learn(env)
# env.stop()
# score += reward
# agent.remember(observation, action, reward, observation_, done)
# if not load_checkpoint:
# agent.learn()
# observation = observation_
# score_history.append(score)
# avg_score = np.mean(score_history[-100:])
# if avg_score > best_score:
# best_score = avg_score
# if not load_checkpoint:
# agent.save_models()
# print('episode ', i, 'score %.1f' % score, 'avg_score %.1f' % avg_score)
# if not load_checkpoint:
# x = [i+1 for i in range(n_games)]
# plot_learning_curve(x, score_history, figure_file)