-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathencoder.py
256 lines (229 loc) · 10.2 KB
/
encoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
from matplotlib.pyplot import axes, axis
import torch
import torch.nn as nn
from src.general import BaseModel
from src.components import DNN
class Encoder(BaseModel):
'''
KuaiRand Multi-Behavior user response model
'''
def __init__(
self,
model_path, loss, l2_coef,
state_user_latent_dim,
state_item_latent_dim,
state_transformer_enc_dim,
state_transformer_n_head,
state_transformer_d_forward,
state_transformer_n_layer,
state_dropout_rate,
device,
reader_stats,
logger
):
super().__init__(model_path, loss, l2_coef, device)
self.user_latent_dim = state_user_latent_dim
self.item_latent_dim = state_item_latent_dim
self.enc_dim = state_transformer_enc_dim
self.state_dim = 3 * self.enc_dim
self.attn_n_head = state_transformer_n_head
self.dropout_rate = state_dropout_rate
stats = reader_stats
self.logger = logger
# {feature_name: dim}
self.user_feature_dims = stats['user_feature_dims']
# {feature_name: dim}
self.item_feature_dims = stats['item_feature_dims']
self.logger.info("POLICY model layers:")
# user embedding
self.uIDEmb = nn.Embedding(stats['n_user']+1, state_user_latent_dim)
self.uFeatureEmb = {}
for f, dim in self.user_feature_dims.items():
embedding_module = nn.Linear(dim, state_user_latent_dim)
self.add_module(f'UFEmb_{f}', embedding_module)
self.uFeatureEmb[f] = embedding_module
self.logger.info(f"- USER embeddings layer: {self.uIDEmb}")
# item embedding
self.iIDEmb = nn.Embedding(stats['n_item']+1, state_item_latent_dim)
self.iFeatureEmb = {}
for f, dim in self.item_feature_dims.items():
embedding_module = nn.Linear(dim, state_item_latent_dim)
self.add_module(f'IFEmb_{f}', embedding_module)
self.iFeatureEmb[f] = embedding_module
self.logger.info(f"- ITEM embeddings layer: {self.iIDEmb}")
# feedback embedding
self.feedback_types = stats['feedback_type']
self.feedback_dim = stats['feedback_size']
self.feedbackEncoder = nn.Linear(
self.feedback_dim, state_transformer_enc_dim)
# item embedding kernel encoder
self.itemEmbNorm = nn.LayerNorm(state_item_latent_dim)
self.userEmbNorm = nn.LayerNorm(state_user_latent_dim)
self.itemFeatureKernel = nn.Linear(
state_item_latent_dim, state_transformer_enc_dim)
self.userFeatureKernel = nn.Linear(
state_user_latent_dim, state_transformer_enc_dim)
self.encDropout = nn.Dropout(state_dropout_rate)
self.encNorm = nn.LayerNorm(state_transformer_enc_dim)
self.max_len = stats['max_seq_len']
# positional embedding
self.posEmb = nn.Embedding(self.max_len, state_transformer_enc_dim)
self.pos_emb_getter = torch.arange(self.max_len, dtype=torch.long)
self.attn_mask = ~torch.tril(torch.ones(
(self.max_len, self.max_len), dtype=torch.bool))
self.logger.info(f"- POSITIONAL embeddings layer: {self.posEmb}")
# sequence encoder
encoder_layer = nn.TransformerEncoderLayer(d_model=2*state_transformer_enc_dim,
dim_feedforward=state_transformer_d_forward,
nhead=state_transformer_n_head,
dropout=state_dropout_rate,
batch_first=True)
self.transformer = nn.TransformerEncoder(
encoder_layer, num_layers=state_transformer_n_layer)
self.logger.info(f"- TRANSFORMER layer: {self.transformer}")
def to(self, device):
new_self = super(Encoder, self).to(device)
new_self.attn_mask = new_self.attn_mask.to(device)
new_self.pos_emb_getter = new_self.pos_emb_getter.to(device)
return new_self
def get_forward(self, feed_dict: dict):
'''
@input:
- feed_dict: {
'user_id': (B,)
'uf_{feature_name}': (B,feature_dim), the user features
'history': (B,max_H)
'history_if_{feature_name}': (B,max_H,feature_dim), the history item features
}
@output:
- out_dict: {'state': (B, state_dim),
'reg': scalar}
'''
B = feed_dict['user_id'].shape[0]
# user encoding
state_encoder_output = self.encode_state(feed_dict, B)
# regularization terms
reg = self.get_regularization(self.feedbackEncoder,
self.itemFeatureKernel, self.userFeatureKernel,
self.posEmb, self.transformer)
reg = reg + state_encoder_output['reg']
return {'state': state_encoder_output['state'],
'reg': reg}
def encode_state(self, feed_dict, B):
'''
@input:
- feed_dict: {
'user_id': (B,)
'uf_{feature_name}': (B,feature_dim), the user features
'history': (B,max_H)
'history_if_{feature_name}': (B,max_H,feature_dim), the history item features
... (irrelevant input)
}
- B: batch size
@output:
- out_dict:{
'out_seq': (B,max_H,2*enc_dim)
'state': (B,n_feedback*enc_dim)
'reg': scalar
}
'''
# user history item encodings (B, max_H, enc_dim)
history_enc, history_reg = self.get_item_encoding(feed_dict['history'],
{f: feed_dict[f'history_if_{f}'] for f in self.iFeatureEmb}, B)
history_enc = history_enc.view(B, self.max_len, self.enc_dim)
# positional encoding (1, max_H, enc_dim)
pos_emb = self.posEmb(self.pos_emb_getter).view(
1, self.max_len, self.enc_dim)
# feedback embedding (B, max_H, enc_dim)
feedback_emb = self.get_response_embedding(
{f: feed_dict[f'history_{f}'] for f in self.feedback_types}, B)
# sequence item encoding (B, max_H, enc_dim)
seq_enc_feat = self.encNorm(self.encDropout(history_enc + pos_emb))
# (B, max_H, 2*enc_dim)
seq_enc = torch.cat((seq_enc_feat, feedback_emb), dim=-1)
# transformer output (B, max_H, 2*enc_dim)
output_seq = self.transformer(seq_enc, mask=self.attn_mask)
# user history encoding (B, 2*enc_dim)
hist_enc = output_seq[:, -1, :].view(B, 2*self.enc_dim)
# static user profile features
# (B, enc_dim), scalar
user_enc, user_reg = self.get_user_encoding(feed_dict['user_id'],
{k[3:]: v for k, v in feed_dict.items() if k[:3] == 'uf_'}, B)
# (B, enc_dim)
user_enc = self.encNorm(self.encDropout(
user_enc)).view(B, self.enc_dim)
# user state (B, 3*enc_dim) combines user history and user profile features
state = torch.cat([hist_enc, user_enc], 1)
# (B, enc_dim)
# state = self.stateNorm(self.finalStateLayer(state))
return {'output_seq': output_seq, 'state': state, 'reg': user_reg + history_reg}
def get_user_encoding(self, user_ids, user_features, B):
'''
@input:
- user_ids: (B,)
- user_features: {'uf_{feature_name}': (B, feature_dim)}
@output:
- encoding: (B, enc_dim)
- reg: scalar
'''
# (B, 1, u_latent_dim)
user_id_emb = self.uIDEmb(user_ids).view(B, 1, self.user_latent_dim)
# [(B, 1, u_latent_dim)] * n_user_feature
user_feature_emb = [user_id_emb]
for f, fEmbModule in self.uFeatureEmb.items():
user_feature_emb.append(fEmbModule(
user_features[f]).view(B, 1, self.user_latent_dim))
# (B, n_user_feature+1, u_latent_dim)
combined_user_emb = torch.cat(user_feature_emb, 1)
combined_user_emb = self.userEmbNorm(combined_user_emb)
# (B, enc_dim)
encoding = self.userFeatureKernel(combined_user_emb).sum(1)
# regularization
reg = torch.mean(user_id_emb * user_id_emb)
return encoding, reg
def get_item_encoding(self, item_ids, item_features, B):
'''
@input:
- item_ids: (B,) or (B,L)
- item_features: {'{feature_name}': (B,feature_dim) or (B,L,feature_dim)}
@output:
- encoding: (B, 1, enc_dim) or (B, L, enc_dim)
- reg: scalar
'''
# (B, 1, i_latent_dim) or (B, L, i_latent_dim)
item_id_emb = self.iIDEmb(item_ids).view(B, -1, self.item_latent_dim)
L = item_id_emb.shape[1]
# [(B, 1, i_latent_dim)] * n_item_feature or [(B, L, i_latent_dim)] * n_item_feature
item_feature_emb = [item_id_emb]
for f, fEmbModule in self.iFeatureEmb.items():
f_dim = self.item_feature_dims[f]
item_feature_emb.append(fEmbModule(item_features[f].view(
B, L, f_dim)).view(B, -1, self.item_latent_dim))
# (B, 1, n_item_feature+1, i_latent_dim) or (B, L, n_item_feature+1, i_latent_dim)
combined_item_emb = torch.cat(
item_feature_emb, -1).view(B, L, -1, self.item_latent_dim)
combined_item_emb = self.itemEmbNorm(combined_item_emb)
# (B, 1, enc_dim) or (B, L, enc_dim)
encoding = self.itemFeatureKernel(combined_item_emb).sum(2)
encoding = self.encNorm(encoding.view(B, -1, self.enc_dim))
# regularization
reg = torch.mean(item_id_emb * item_id_emb)
return encoding, reg
def get_response_embedding(self, resp_dict, B):
'''
@input:
- resp_dict: {'{response}': (B, max_H)}
@output:
- resp_emb: (B, max_H, enc_dim)
'''
resp_list = []
for f in self.feedback_types:
# (B, max_H)
resp = resp_dict[f].view(B, self.max_len)
resp_list.append(resp)
# (B, max_H, n_feedback)
combined_resp = torch.cat(
resp_list, -1).view(B, self.max_len, self.feedback_dim)
# (B, max_H, enc_dim)
resp_emb = self.feedbackEncoder(combined_resp)
return resp_emb