-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbuffer.py
223 lines (199 loc) · 10.6 KB
/
buffer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import numpy as np
import torch as T
class ReplayBuffer():
def __init__(self, max_size, device, state_dim, action_dim):
self.mem_size = max_size
self.mem_cntr = 0
self.device = device
self.state_dim = state_dim
self.action_dim = action_dim
# self.state_memory = np.zeros((self.mem_size, *input_shape))
# self.new_state_memory = np.zeros((self.mem_size, *input_shape))
# self.action_memory = np.zeros((self.mem_size, n_actions))
# self.reward_memory = np.zeros(self.mem_size)
# self.terminal_memory = np.zeros(self.mem_size, dtype=bool)
def store_transition(self, state, action, reward, state_, done):
index = self.mem_cntr % self.mem_size
self.state_memory[index] = state
self.new_state_memory[index] = state_
self.action_memory[index] = action
self.reward_memory[index] = reward
self.terminal_memory[index] = done
self.mem_cntr += 1
def sample_buffer(self, batch_size):
max_mem = min(self.mem_cntr, self.mem_size)
batch = np.random.choice(max_mem, batch_size)
profile = {k: v[batch] for k, v in self.state_memory["user_profile"].items()}
history = {k: v[batch] for k, v in self.state_memory["user_history"].items()}
observation = {"user_profile": profile, "user_history": history}
profile = {k: v[batch] for k, v in self.next_state_memory["user_profile"].items()}
history = {k: v[batch] for k, v in self.next_state_memory["user_history"].items()}
next_observation = {"user_profile": profile, "user_history": history}
actions = {
"state": self.action_memory["state"][batch],
"action": self.action_memory["action"][batch],
# "prob": self.action_memory["prob"][batch]
}
rewards = self.reward_memory[batch]
# immediate_response = self.immediate_response[batch]
dones = self.terminal_memory[batch]
return observation, actions, rewards, next_observation, dones
def reset(self, env):
observation = env.create_observation_buffer(self.mem_size)
next_observation = env.create_observation_buffer(self.mem_size)
policy_output = {
'state': T.zeros(self.mem_size, self.state_dim).to(T.float).to(self.device),
'action': T.zeros(self.mem_size, self.action_dim).to(T.long).to(self.device),
# 'prob': T.zeros(self.mem_size, env.slate_size).to(T.float).to(self.device)
}
reward = T.zeros(self.mem_size).to(T.float).to(self.device)
done = T.zeros(self.mem_size).to(T.bool).to(self.device)
im_response = T.zeros(self.mem_size, env.response_dim * env.slate_size).to(T.float).to(self.device)
self.state_memory = observation
self.next_state_memory = next_observation
self.action_memory = policy_output
self.reward_memory = reward
self.immediate_response = im_response
self.terminal_memory = done
class BaseBuffer():
'''
The general buffer
'''
def __init__(self, buffer_size, device, state_dim, action_dim):
self.buffer_size = buffer_size
super().__init__()
self.device = device
self.buffer_head = 0
self.current_buffer_size = 0
self.n_stream_record = 0
self.state_dim = state_dim
self.action_dim = action_dim
def reset(self, env):
'''
@output:
- buffer: {'observation': {'user_profile': {'user_id': (L,),
'uf_{feature_name}': (L, feature_dim)},
'user_history': {'history': (L, max_H),
'history_if_{feature_name}': (L, max_H * feature_dim),
'history_{response}': (L, max_H),
'history_length': (L,)}}
'policy_output': {'state': (L, state_dim),
'action': (L, action_dim),
'prob': (L, slate_size)},
'next_observation': same format as @output-buffer['observation'],
'done_mask': (L,),
'response': {'reward': (L,),
'immediate_response':, (L, slate_size * response_dim)}}
'''
observation = env.create_observation_buffer(self.buffer_size)
next_observation = env.create_observation_buffer(self.buffer_size)
policy_output = {
'state': T.zeros(self.buffer_size, self.state_dim).to(T.float).to(self.device),
'action': T.zeros(self.buffer_size, self.action_dim).to(T.float).to(self.device),
# 'prob': T.zeros(self.buffer_size, env.slate_size).to(T.float).to(self.device)
}
reward = T.zeros(self.buffer_size).to(T.float).to(self.device)
done = T.zeros(self.buffer_size).to(T.bool).to(self.device)
im_response = T.zeros(self.buffer_size, env.response_dim * env.slate_size)\
.to(T.float).to(self.device)
self.buffer = {'observation': observation,
'policy_output': policy_output,
'user_response': {'reward': reward, 'immediate_response': im_response},
'done_mask': done,
'next_observation': next_observation}
return self.buffer
def sample(self, batch_size):
'''
Batch sample is organized as a tuple of (observation, policy_output, user_response, done_mask, next_observation)
Buffer: see reset@output
@output:
- observation: {'user_profile': {'user_id': (B,),
'uf_{feature_name}': (B, feature_dim)},
'user_history': {'history': (B, max_H),
'history_if_{feature_name}': (B, max_H * feature_dim),
'history_{response}': (B, max_H),
'history_length': (B,)}}
- policy_output: {'state': (B, state_dim),
'action': (B, slate_size),
'prob': (B, slate_size)},
- user_feedback: {'reward': (B,),
'immediate_response':, (B, slate_size * response_dim)}}
- done_mask: (B,),
- next_observation: same format as @output - observation,
'''
# get indices
indices = np.random.randint(
0, self.current_buffer_size, size=batch_size)
# observation
profile = {k: v[indices]
for k, v in self.buffer["observation"]["user_profile"].items()}
history = {k: v[indices]
for k, v in self.buffer["observation"]["user_history"].items()}
observation = {"user_profile": profile, "user_history": history}
# next observation
profile = {k: v[indices]
for k, v in self.buffer["next_observation"]["user_profile"].items()}
history = {k: v[indices]
for k, v in self.buffer["next_observation"]["user_history"].items()}
next_observation = {"user_profile": profile, "user_history": history}
# policy output
policy_output = {"state": self.buffer["policy_output"]["state"][indices],
"action": self.buffer["policy_output"]["action"][indices],
# "prob": self.buffer["policy_output"]["prob"][indices]
}
# user response
user_response = {"reward": self.buffer["user_response"]["reward"][indices],
"immediate_response": self.buffer["user_response"]["immediate_response"][indices]}
# done mask
done_mask = self.buffer["done_mask"][indices]
return observation, policy_output, user_response, done_mask, next_observation
def update(self, observation, policy_output, user_feedback, next_observation):
'''
@input:
- observation: {'user_profile': {'user_id': (B,),
'uf_{feature_name}': (B, feature_dim)},
'user_history': {'history': (B, max_H),
'history_if_{feature_name}': (B, max_H * feature_dim),
'history_{response}': (B, max_H),
'history_length': (B,)}}
- policy_output: {'user_state': (B, state_dim),
'prob': (B, action_dim),
'action': (B, action_dim)}
- user_feedback: {'done': (B,),
'immdiate_response':, (B, action_dim * feedback_dim),
'reward': (B,)}
- next_observation: same format as update_buffer@input-observation
'''
# get buffer indices to update
B = len(user_feedback['reward'])
if self.buffer_head + B >= self.buffer_size:
tail = self.buffer_size - self.buffer_head
indices = [self.buffer_head + i for i in range(tail)] + \
[i for i in range(B - tail)]
else:
indices = [self.buffer_head + i for i in range(B)]
indices = T.tensor(indices).to(T.long).to(self.device)
# update buffer - observation
for k, v in observation['user_profile'].items():
self.buffer['observation']['user_profile'][k][indices] = v
for k, v in observation['user_history'].items():
self.buffer['observation']['user_history'][k][indices] = v
# update buffer - next observation
for k, v in next_observation['user_profile'].items():
self.buffer['next_observation']['user_profile'][k][indices] = v
for k, v in next_observation['user_history'].items():
self.buffer['next_observation']['user_history'][k][indices] = v
# update buffer - policy output
self.buffer['policy_output']['state'][indices] = policy_output['state']
self.buffer['policy_output']['action'][indices] = policy_output['action']
# self.buffer['policy_output']['prob'][indices] = policy_output['prob']
# update buffer - user response
self.buffer['user_response']['immediate_response'][indices] = user_feedback['immediate_response'].view(
B, -1)
self.buffer['user_response']['reward'][indices] = user_feedback['reward']
# update buffer - done
self.buffer['done_mask'][indices] = user_feedback['done']
# buffer pointer
self.buffer_head = (self.buffer_head + B) % self.buffer_size
self.n_stream_record += B
self.current_buffer_size = min(self.n_stream_record, self.buffer_size)