-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtest2.py
57 lines (48 loc) · 1.73 KB
/
test2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import cv2
import numpy as np
cap = cv2.VideoCapture(0)
while (cap.isOpened()):
ret, img = cap.read()
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
ret, thresh1 = cv2.threshold(blur, 70, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU)
contours, hierarchy = cv2.findContours(thresh1, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
drawing = np.zeros(img.shape, np.uint8)
max_area = 0
for i in range(len(contours)):
cnt = contours[i]
area = cv2.contourArea(cnt)
if (area > max_area):
max_area = area
ci = i
cnt = contours[ci]
hull = cv2.convexHull(cnt)
moments = cv2.moments(cnt)
if moments['m00'] != 0:
cx = int(moments['m10'] / moments['m00']) # cx = M10/M00
cy = int(moments['m01'] / moments['m00']) # cy = M01/M00
centr = (cx, cy)
cv2.circle(img, centr, 5, [0, 0, 255], 2)
cv2.drawContours(drawing, [cnt], 0, (0, 255, 0), 2)
cv2.drawContours(drawing, [hull], 0, (0, 0, 255), 2)
cnt = cv2.approxPolyDP(cnt, 0.01 * cv2.arcLength(cnt, True), True)
hull = cv2.convexHull(cnt, returnPoints=False)
if (1):
defects = cv2.convexityDefects(cnt, hull)
mind = 0
maxd = 0
for i in range(defects.shape[0]):
s, e, f, d = defects[i, 0]
start = tuple(cnt[s][0])
end = tuple(cnt[e][0])
far = tuple(cnt[f][0])
dist = cv2.pointPolygonTest(cnt, centr, True)
cv2.line(img, start, end, [0, 255, 0], 2)
cv2.circle(img, far, 5, [0, 0, 255], -1)
print(i)
i = 0
cv2.imshow('output', drawing)
cv2.imshow('input', img)
k = cv2.waitKey(10)
if k == 27:
break