-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_fcbm_all.py
274 lines (213 loc) · 12.5 KB
/
train_fcbm_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import torch
import os
import random
import utils
import data_utils
import similarity
import argparse
import datetime
import json
from attack import PGDAttacker
from metrics import topk_overlap_loss,topK_overlap_true_loss,loss_robust
from glm_saga.elasticnet import IndexedTensorDataset, glm_saga
from torch.utils.data import DataLoader, TensorDataset
parser = argparse.ArgumentParser(description='Settings for creating CBM')
parser.add_argument("--dataset", type=str, default="cifar10")
parser.add_argument("--concept_set", type=str, default=None,
help="path to concept set name")
parser.add_argument("--backbone", type=str, default="clip_RN50", help="Which pretrained model to use as backbone")
parser.add_argument("--clip_name", type=str, default="ViT-B/16", help="Which CLIP model to use")
parser.add_argument("--device", type=str, default="cuda", help="Which device to use")
parser.add_argument("--batch_size", type=int, default=512, help="Batch size used when saving model/CLIP activations")
parser.add_argument("--saga_batch_size", type=int, default=256, help="Batch size used when fitting final layer")
parser.add_argument("--proj_batch_size", type=int, default=50000, help="Batch size to use when learning projection layer")
parser.add_argument("--feature_layer", type=str, default='layer4',
help="Which layer to collect activations from. Should be the name of second to last layer in the model")
parser.add_argument("--activation_dir", type=str, default='saved_activations', help="save location for backbone and CLIP activations")
parser.add_argument("--save_dir", type=str, default='saved_models', help="where to save trained models")
parser.add_argument("--clip_cutoff", type=float, default=0.25, help="concepts with smaller top5 clip activation will be deleted")
parser.add_argument("--proj_steps", type=int, default=1000, help="how many steps to train the projection layer for")
parser.add_argument("--interpretability_cutoff", type=float, default=0.45, help="concepts with smaller similarity to target concept will be deleted")
parser.add_argument("--lam", type=float, default=0.0007, help="Sparsity regularization parameter, higher->more sparse")
parser.add_argument("--n_iters", type=int, default=1000, help="How many iterations to run the final layer solver for")
parser.add_argument("--print", action='store_true', help="Print all concepts being deleted in this stage")
def crit_sta(gt, pred):
return topk_overlap_loss(gt, pred,K=args.K).mean()
best_top1=0.0
best_top2=0.0
best_top3=0.0
best_top4=0.0
best_top5=0.0
best_matching=100.0
def train_cbm_and_save(args):
if not os.path.exists(args.save_dir):
os.mkdir(args.save_dir)
if args.concept_set==None:
args.concept_set = "data/concept_sets/{}_filtered.txt".format(args.dataset)
similarity_fn = similarity.cos_similarity_cubed_single
d_train = args.dataset + "_train"
d_val = args.dataset + "_val"
#get concept set
cls_file = data_utils.LABEL_FILES[args.dataset]
with open(cls_file, "r") as f:
classes = f.read().split("\n")
with open(args.concept_set) as f:
concepts = f.read().split("\n")
#save activations and get save_paths
for d_probe in [d_train, d_val]:
utils.save_activations(clip_name = args.clip_name, target_name = args.backbone,
target_layers = [args.feature_layer], d_probe = d_probe,
concept_set = args.concept_set, batch_size = args.batch_size,
device = args.device, pool_mode = "avg", save_dir = args.activation_dir)
target_save_name, clip_save_name, text_save_name = utils.get_save_names(args.clip_name, args.backbone,
args.feature_layer,d_train, args.concept_set, "avg", args.activation_dir)
val_target_save_name, val_clip_save_name, text_save_name = utils.get_save_names(args.clip_name, args.backbone,
args.feature_layer, d_val, args.concept_set, "avg", args.activation_dir)
#load features
with torch.no_grad():
target_features = torch.load(target_save_name, map_location="cpu").float()
val_target_features = torch.load(val_target_save_name, map_location="cpu").float()
image_features = torch.load(clip_save_name, map_location="cpu").float()
image_features /= torch.norm(image_features, dim=1, keepdim=True)
val_image_features = torch.load(val_clip_save_name, map_location="cpu").float()
val_image_features /= torch.norm(val_image_features, dim=1, keepdim=True)
text_features = torch.load(text_save_name, map_location="cpu").float()
text_features /= torch.norm(text_features, dim=1, keepdim=True)
clip_features = image_features @ text_features.T
val_clip_features = val_image_features @ text_features.T
del image_features, text_features, val_image_features
#filter concepts not activating highly
highest = torch.mean(torch.topk(clip_features, dim=0, k=5)[0], dim=0)
if args.print:
for i, concept in enumerate(concepts):
if highest[i]<=args.clip_cutoff:
print("Deleting {}, CLIP top5:{:.3f}".format(concept, highest[i]))
concepts = [concepts[i] for i in range(len(concepts)) if highest[i]>args.clip_cutoff]
#save memory by recalculating
del clip_features
with torch.no_grad():
image_features = torch.load(clip_save_name, map_location="cpu").float()
image_features /= torch.norm(image_features, dim=1, keepdim=True)
text_features = torch.load(text_save_name, map_location="cpu").float()[highest>args.clip_cutoff]
text_features /= torch.norm(text_features, dim=1, keepdim=True)
clip_features = image_features @ text_features.T
del image_features, text_features
val_clip_features = val_clip_features[:, highest>args.clip_cutoff]
X_PGDer = PGDAttacker(
radius=args.x_pgd_radius, steps=args.x_pgd_step, step_size=args.x_pgd_step_size, random_start= \
True, norm_type=args.x_pgd_norm_type, ascending=True
)
new_target_features = X_PGDer.perturb(bs=batch,x=target_features.shape[1])
# new_embedd, weight_perb = topK_PGD_process(cX_PGDer)
#
#learn projection layer
proj_layer_t = torch.nn.Linear(in_features=new_target_features.shape[1] + , out_features=len(concepts),
bias=False).to(args.device)
proj_layer = torch.nn.Linear(in_features=target_features.shape[1], out_features=len(concepts),
bias=False).to(args.device)
opt = torch.optim.Adam(proj_layer.parameters(), lr=1e-3)
indices = [ind for ind in range(len(target_features))]
best_val_loss = float("inf")
best_step = 0
best_weights = None
proj_batch_size = min(args.proj_batch_size, len(target_features))
for i in range(args.proj_steps):
batch = torch.LongTensor(random.sample(indices, k=proj_batch_size))
outs_t = proj_layer(target_features[batch].to(args.device).detach())
outs = proj_layer_t(new_target_features[batch].to(args.device).detach())
loss_in = -similarity_fn(clip_features[batch].to(args.device).detach(), outs)
top_loss= topk_overlap_loss(outs_t, outs).sum()
loss = torch.mean(loss_in) + torch.mean(top_loss)
loss.backward()
opt.step()
if i%50==0 or i==args.proj_steps-1:
with torch.no_grad():
val_output = proj_layer(val_target_features.to(args.device).detach())
val_loss = -similarity_fn(val_clip_features.to(args.device).detach(), val_output)
val_loss = torch.mean(val_loss)
if i==0:
best_val_loss = val_loss
best_step = i
best_weights = proj_layer.weight.clone()
print("Step:{}, Avg train similarity:{:.4f}, Avg val similarity:{:.4f}".format(best_step, -loss.cpu(),
-best_val_loss.cpu()))
elif val_loss < best_val_loss:
best_val_loss = val_loss
best_step = i
best_weights = proj_layer.weight.clone()
else: #stop if val loss starts increasing
break
opt.zero_grad()
proj_layer.load_state_dict({"weight":best_weights})
print("Best step:{}, Avg val similarity:{:.4f}".format(best_step, -best_val_loss.cpu()))
#delete concepts that are not interpretable
with torch.no_grad():
outs = proj_layer(val_target_features.to(args.device).detach())
sim = similarity_fn(val_clip_features.to(args.device).detach(), outs)
interpretable = sim > args.interpretability_cutoff
if args.print:
for i, concept in enumerate(concepts):
if sim[i]<=args.interpretability_cutoff:
print("Deleting {}, Iterpretability:{:.3f}".format(concept, sim[i]))
concepts = [concepts[i] for i in range(len(concepts)) if interpretable[i]]
del clip_features, val_clip_features
W_c = proj_layer.weight[interpretable]
proj_layer = torch.nn.Linear(in_features=target_features.shape[1], out_features=len(concepts), bias=False)
proj_layer.load_state_dict({"weight":W_c})
train_targets = data_utils.get_targets_only(d_train)
val_targets = data_utils.get_targets_only(d_val)
with torch.no_grad():
train_c = proj_layer(target_features.detach())
val_c = proj_layer(val_target_features.detach())
train_mean = torch.mean(train_c, dim=0, keepdim=True)
train_std = torch.std(train_c, dim=0, keepdim=True)
train_c -= train_mean
train_c /= train_std
train_y = torch.LongTensor(train_targets)
indexed_train_ds = IndexedTensorDataset(train_c, train_y)
val_c -= train_mean
val_c /= train_std
val_y = torch.LongTensor(val_targets)
val_ds = TensorDataset(val_c,val_y)
indexed_train_loader = DataLoader(indexed_train_ds, batch_size=args.saga_batch_size, shuffle=True)
val_loader = DataLoader(val_ds, batch_size=args.saga_batch_size, shuffle=False)
# Make linear model and zero initialize
linear = torch.nn.Linear(train_c.shape[1],len(classes)).to(args.device)
linear.weight.data.zero_()
linear.bias.data.zero_()
STEP_SIZE = 0.1
ALPHA = 0.99
metadata = {}
metadata['max_reg'] = {}
metadata['max_reg']['nongrouped'] = args.lam
# Solve the GLM path
output_proj = glm_saga(linear, indexed_train_loader, STEP_SIZE, args.n_iters, ALPHA, epsilon=1, k=1,
val_loader=val_loader, do_zero=False, metadata=metadata, n_ex=len(target_features), n_classes = len(classes))
W_g = output_proj['path'][0]['weight']
b_g = output_proj['path'][0]['bias']
save_name = "{}/{}_cbm_{}".format(args.save_dir, args.dataset, datetime.datetime.now().strftime("%Y_%m_%d_%H_%M"))
os.mkdir(save_name)
torch.save(train_mean, os.path.join(save_name, "proj_mean.pt"))
torch.save(train_std, os.path.join(save_name, "proj_std.pt"))
torch.save(W_c, os.path.join(save_name ,"W_c.pt"))
torch.save(W_g, os.path.join(save_name, "W_g.pt"))
torch.save(b_g, os.path.join(save_name, "b_g.pt"))
with open(os.path.join(save_name, "concepts.txt"), 'w') as f:
f.write(concepts[0])
for concept in concepts[1:]:
f.write('\n'+concept)
with open(os.path.join(save_name, "args.txt"), 'w') as f:
json.dump(args.__dict__, f, indent=2)
with open(os.path.join(save_name, "metrics.txt"), 'w') as f:
out_dict = {}
for key in ('lam', 'lr', 'alpha', 'time'):
out_dict[key] = float(output_proj['path'][0][key])
out_dict['metrics'] = output_proj['path'][0]['metrics']
nnz = (W_g.abs() > 1e-5).sum().item()
total = W_g.numel()
out_dict['sparsity'] = {"Non-zero weights":nnz, "Total weights":total, "Percentage non-zero":nnz/total}
json.dump(out_dict, f, indent=2)
## something have been deleted. if you want to get full code, email me and we would release it to you.
if __name__=='__main__':
args = parser.parse_args()
train_cbm_and_save(args)