-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWolframLanguageIntroduction.nb
8004 lines (7752 loc) · 388 KB
/
WolframLanguageIntroduction.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 11.3' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 158, 7]
NotebookDataLength[ 396667, 7996]
NotebookOptionsPosition[ 380981, 7760]
NotebookOutlinePosition[ 381348, 7776]
CellTagsIndexPosition[ 381305, 7773]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[CellGroupData[{
Cell["An introduction to the Wolfram Language for Minervans", "Section",
CellChangeTimes->{{3.746165283256872*^9,
3.746165300207507*^9}},ExpressionUUID->"acfe4bd9-fc63-44fd-80ef-\
e92470f61e5e"],
Cell["\<\
Hello Minervans,
Minerva just got a license for Mathematica/ the Wolfram Language/ WL (it\
\[CloseCurlyQuote]s the same thing) and this document and others that will \
follow are there to help you in making best use of the language for the \
Minerva curriculum.
You\[CloseCurlyQuote]ll quickly see that it can help you in many classes and \
has capabilities for many topics like Logic, Statistics, Calculus, Machine \
Learning, Graph Theory, Digital Humanities,...
I hope you\[CloseCurlyQuote]ll enjoy it and if you have any questions, feel \
free to email me at Katja.dellalibera@minerva.kgi.edu.\
\>", "Text",
CellChangeTimes->{{3.74616532044839*^9, 3.746165322267524*^9}, {
3.7461653927979393`*^9, 3.746165408982664*^9}, {3.746165912263782*^9,
3.7461659333643646`*^9}, {3.746166063049778*^9, 3.7461661048876314`*^9}, {
3.7461661572086573`*^9, 3.746166161316721*^9}, {3.7462185386155663`*^9,
3.746218597031021*^9}, {3.7462246070164037`*^9, 3.746224696953026*^9}, {
3.74622472943783*^9, 3.746224734328998*^9}, {3.7462271925803337`*^9,
3.746227337588827*^9}, {3.746228397557969*^9, 3.746228449949851*^9}, {
3.7462401987054305`*^9, 3.7462402710580363`*^9}, {3.746482526395055*^9,
3.746482532484195*^9}},ExpressionUUID->"6c5dc7f1-d768-4338-b040-\
dea4f05d7efd"],
Cell[CellGroupData[{
Cell["The Basics: Syntax and running programs", "Subsection",
CellChangeTimes->{{3.74616541124662*^9, 3.7461654187066646`*^9}, {
3.746165458354656*^9, 3.7461654799679213`*^9}, {3.7461656828133793`*^9,
3.746165687234481*^9}},ExpressionUUID->"d7d2f2f1-a693-41db-83c5-\
f0e809623ce5"],
Cell["\<\
To run anything in a Mathematica Notebook, just type your input and press \
[SHIFT]+[ENTER] to compute:\
\>", "Text",
CellChangeTimes->{{3.7461655069016085`*^9, 3.7461656943929873`*^9}, {
3.746165728134555*^9,
3.7461657853244996`*^9}},ExpressionUUID->"c79b1cfd-b3b0-4b0f-8203-\
2fd69fe6846a"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"1412", "+", "851", " "}]], "Input",
CellChangeTimes->{{3.746165789393385*^9, 3.746165809477404*^9}, {
3.746334266136294*^9, 3.746334305540327*^9}},
CellLabel->"In[44]:=",ExpressionUUID->"f053157d-4eac-441d-8482-83a00dc6f4a4"],
Cell[BoxData["2263"], "Output",
CellChangeTimes->{3.746334306526696*^9},
CellLabel->"Out[44]=",ExpressionUUID->"580e5bfa-40f5-41d6-bf2d-7ee83ebf076d"]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Range", "[", "10", "]"}]], "Input",
CellChangeTimes->{{3.746165831794017*^9, 3.746165834683233*^9}},
CellLabel->"In[45]:=",ExpressionUUID->"953b7f8f-927e-4945-9300-687e31fb849c"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8",
",", "9", ",", "10"}], "}"}]], "Output",
CellChangeTimes->{3.7463343089124613`*^9},
CellLabel->"Out[45]=",ExpressionUUID->"e9946f24-a127-4261-b647-e852c4716fec"]
}, Open ]],
Cell["\<\
We have already come across some important syntax: Built-in functions in the \
Wolfram language start with a capital letter and are applied on some number \
of elements (in this case the integer 10) inside of square brackets [] \
resulting in an output (in this case a list from 1 to 10). Lists can be any \
number and combination of numbers, lists, strings, variables, etc and are \
marked by curly brackets {} \
\>", "Text",
CellChangeTimes->{{3.7461661702598095`*^9, 3.7461664334749765`*^9}, {
3.7461669372181253`*^9, 3.7461669479564085`*^9}, {3.7461672146802855`*^9,
3.7461672205324497`*^9}, {3.7462123737435465`*^9, 3.7462123867834234`*^9}, {
3.7462284820570526`*^9, 3.7462284845683393`*^9}, {3.746268697685062*^9,
3.746268708095194*^9}},ExpressionUUID->"90d86723-e27f-48a0-bcb7-\
8a9cf24d4111"],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"r", "=",
RowBox[{"Range", "[", "10", "]"}]}], ";"}], " ",
RowBox[{"(*",
RowBox[{
RowBox[{"define", " ", "r"}], ",", " ",
RowBox[{"but", " ",
RowBox[{"don", "'"}], "t", " ", "print", " ", "it"}]}],
"*)"}]}]], "Input",
CellChangeTimes->{{3.7461664383958197`*^9, 3.746166457041002*^9}, {
3.746228529849264*^9, 3.7462285432863398`*^9}, {3.746268718440568*^9,
3.7462687192513905`*^9}},ExpressionUUID->"ff3a53a6-6f61-4f99-a3ff-\
e82717e97a1d"],
Cell["\<\
If you don\[CloseCurlyQuote]t want your function to print immediately, simply \
put the \[OpenCurlyDoubleQuote];\[CloseCurlyDoubleQuote] behind it. It will \
still evaluate and define the variable r. Comments look like this: (*comment*)\
\>", "Text",
CellChangeTimes->{{3.7461664601785774`*^9, 3.74616650771348*^9}, {
3.746228524179415*^9,
3.746228592419775*^9}},ExpressionUUID->"d72afefb-e7a7-49b4-8074-\
222e99e3c96d"],
Cell["Display the variable r, you just defined", "CodeText",
CellChangeTimes->{{3.7462687549489193`*^9, 3.746268770957161*^9}, {
3.746318516473979*^9,
3.7463185170609074`*^9}},ExpressionUUID->"420058f8-4b4d-4c51-81f1-\
17f27f856128"],
Cell[CellGroupData[{
Cell[BoxData["r"], "Input",
CellChangeTimes->{3.746166509778001*^9},
CellLabel->"In[15]:=",ExpressionUUID->"8a236c07-d540-45ce-aac4-ed8e77024593"],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"1", ",", "2", ",", "3", ",", "4", ",", "5", ",", "6", ",", "7", ",", "8",
",", "9", ",", "10"}], "}"}]], "Output",
CellChangeTimes->{3.7461672845551877`*^9, 3.746167317897072*^9},
CellLabel->"Out[15]=",ExpressionUUID->"465d0ff2-d684-4419-ad1b-3eb2787329dc"]
}, Open ]],
Cell[TextData[{
"Use ",
StyleBox["Length ",
FontWeight->"Bold"],
"and ",
StyleBox["%",
FontWeight->"Bold"],
" to get the length of the last output"
}], "CodeText",
CellChangeTimes->{{3.746227401282468*^9,
3.746227437809561*^9}},ExpressionUUID->"d7159c24-5212-4f36-a2d6-\
a14b3f0ede1b"],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Length", "[", "%", "]"}]], "Input",
CellChangeTimes->{
3.7461668817055016`*^9, {3.746167234118544*^9, 3.7461672727694693`*^9}, {
3.7461673146692343`*^9, 3.7461673153883095`*^9}, {3.746167583585513*^9,
3.746167588321292*^9}},
CellLabel->"In[17]:=",ExpressionUUID->"c5b2cb06-b814-4dcc-ab32-3d613f68cf89"],
Cell[BoxData["10"], "Output",
CellChangeTimes->{
3.746166882587214*^9, {3.7461672431029005`*^9, 3.7461672911578503`*^9},
3.7461673240745583`*^9, 3.7461675888837905`*^9},
CellLabel->"Out[17]=",ExpressionUUID->"95adb519-58f7-44c0-adb0-4a3ea1b5f406"]
}, Open ]],
Cell["\<\
To see r, simply type it in an input field and evaluate it. The symbol % will \
also return the last output, but generally it is better to define a variable. \
For those, the convention is using lowercase letters and words (Upper-case is \
reserved for built-in functions), and distinguishing multiple words using \
camel case (randomVariable, anotherRandomVariable,...)\
\>", "Text",
CellChangeTimes->{{3.746166513311513*^9, 3.7461665444094095`*^9}, {
3.7461668849308834`*^9, 3.7461669208049593`*^9}, {3.7461670630067835`*^9,
3.7461671635339823`*^9}, {3.746268796068022*^9,
3.746268823405927*^9}},ExpressionUUID->"087d33d1-9fb7-4535-9f12-\
b4a8c04562a6"]
}, Open ]],
Cell[CellGroupData[{
Cell["Getting Started", "Subsection",
CellChangeTimes->{{3.746169543417392*^9,
3.746169562631672*^9}},ExpressionUUID->"e8ba0604-9156-4d60-b3a4-\
6fa1abf46e2f"],
Cell["\<\
The notebooks are designed to help you enter Wolfram Language input:\
\>", "Text",
CellChangeTimes->{{3.7461671864008837`*^9, 3.7461671902314653`*^9}, {
3.746167338151737*^9, 3.7461673795300426`*^9}, {3.7461674205399313`*^9,
3.746167423409293*^9}},ExpressionUUID->"01fdd64d-df9d-44a3-bbf4-\
beaeebd2291e"],
Cell[BoxData[
GraphicsBox[
TagBox[RasterBox[CompressedData["
1:eJzsvXeUHDW2P/7S7nn/vHPe+53zXWycbWxjGzA5LJuXJS552V3yEgwLCxgw
4JwTxjnnnAgGjHEeezwznuQ0wTMeT855pnN3dVUn/26VqlSSStXTNu5lwbpH
06dKJV1d3ZI++kilqun38sgnXvuPf/u3fxv13/DzxEujf/v++y+NffJ/4eSp
d0a98fo7I1594J0PRrw+4v07X/5PiMyHv4J//7d/U48vCBEiRIgQIUKECBEi
RIgQIUKECBEiRIgQIUKECBEiRIgQIUKECBEiRIgQIUKECBEiRIgQIUKECBEi
RIgQIUKECBEiRIgQIUKECBEiRIgQIUKECBEiRIiQH6/ENPm+rbgMArVoaWmt
rq6ORqPfty1ChAgRworD4fx6956srJwEMQqSSZL0rwlokUjk8893zZo9R1FC
cZIBLMuy/OMYYoQIEfIDkpMnT4+fMBkwyuVyJZK+tq5u3IRJrW1tyTbsEkTF
2y8Abz9RFCVOskAgsHz5Svj9pxkmRIgQIeFwePOWrfsPHPp4ztySkvOJZCk5
f/6tt99tbm4hI4ErAnwB77Wmh0t+P3sJpYdYLskEq3w+Xyikc1Qgq36/n8uo
g8EgKMdKNLz9UuO3Jt5CpM/nl2UzxuVyz5w1B3RyqyB4rxAhQpIhTqdz+ozZ
VVXVO3Z8+s033yKoAYD69tt9ubknEfAAdu35dl9KylFAvKKionnzF70z8v0F
CxcvX7ESuC4kcLvdn372xaTJ06ZOmwlKANyw/s5Ox5Zt2ydNnjpl6oxvvtmL
KKXT6dqx87PJU6ZPmTod0mMobm1t3f3Nt2DS2nUbx42fuHbtBkDdmppaKGvC
xClf7PoSITCYl3LkaF5efnr68RkzZ0+ePH3Xrq8AeC+YeKvzW6hOQ0PDipWr
J0ycOnfugoKCs1oVipcsXf7Bh6MXL162es26lpZWSAYFff75LrBn2rSZ+/cf
+NdcLREiRMgPVwBVMo5nzvlkHgBmfkHB/AWLgFhCPMDa0mUrdhvwK0lBAKj1
GzZB+srKqjVr1r39znsAsPv2HWhra/d6vcuWr1ywcMnJk6czM7NmzPp48+at
CBgBV0HnwkVLcnNPZOfkbty0GdIDq1y5cs2cufMhMicn95O5CzZs2ITQsqqq
ZvyEyVDWvv0HMjIyAf0gJaBuWlr6vn37Pxo9LjX1GDJv46Yt4ydM2rRpa35+
/tGjx8aPn7R9x6eAscx6AowjU6ZM/+zzXaWlZUeOpk6bPqvkXAlUYevWHaPH
jPt69zcHDx4GePd4PIDJi5csLygozMvLmzd/4Vdf7wZV39+dESJEyI9NAOWW
Ll0BAAXY0traBuy0oqLyggpo4eXLV+zZsxfj7bJlKzds3IxOT5489dY776H1
BEDgowB3EybX1zdc0PgkHEycPO38+fOg84tdX02f+TFe6QWchMgTJ04C13U4
nCiyrKx89JjxoBPyVlfXjB03EUAS1MIpcOxx4yc1NzfDMZi6YsWqlavWgAbQ
s2nTFoBHWZYvaIsPh1OOaClbwgTeQspt23cCkUbYC8mABoMGOKitrQMwR+sJ
oBxGitmzP4GBA46h6MLCsx9+NLa9veOffT+ECBHywxRAlS6XImGuPXbchJSU
o/X19eXl5XM+mQ8sEQBHw9uVFrzdgpSdOHnqbQNvAcpWrly9dNlKRFC1xNLC
xUtgbh4IBGbOnrNt285w2CSKgIHr1m+EWTxmj4ByH8+ZC6gIMdXVNRMnTfV6
fRc0GDx2LG369FloCQJM2rR5K1DlUDis4u3mLatXr0MaIGVVVRUgJAwWUBZe
T5AVBTTv33/w3LkSCMXnzgHRnTFrNsAsibdoCWL5ilUoGQRg6SPfHQU0+PLe
ESFChPz4BPCnra0tPy/v1MmTGAa5AnP8j0aPnzdvIcz6FyxYBBA0afI0YJ5W
vF26bAXJbzHegn7AwLXrNuBnWxAD2LV+wyYAUiC6u778ilwLhVFg8ZJlmzdv
xZEAp/MXLIb0cKlaxdspGG9Tj6VNmz7L7yfxdinC242bKLytq6v74MMxQJXJ
9QRgv9Omz9y+fSewXxhTIBw6lJKZlQ2XGLzdum373HkLcbLDh4+gdYbLfGOE
CBHyIxKADpfTWZCXl56WdiInp7mpKRKxfe4D+AYsEdApqoo6j4aJ/LvvfXj2
7FkVb1es3L17DwLYQEBasnQ5xluS34KSLVu3zZ27wOfzIbVwAKzywIFDwaA8
f+GiNWvWo1k/tvCLL3YtWrwULRRf0B6oTZ02c/fub8GAagZvUxm83bJokZoR
rSdgvIWMJ06cHD1mXH19g8ZvdbyFZFDQsbSMGCFIM4m3kH3f/gNA4EEznVCI
ECFCOAKg0d7WdrawMDMjI+/0aUDa+BtQL6h7olzTZ8w6f74UxwA1nTNn3pdf
fa1tEtsGZBLIJ2g+dfrMuPGTNm7S8TY/v+DNf4wsL6+AM4gpKSkZPWb8CW0B
FjIeO5YOUNbR0QkZMzOzx46fWFhYhNZF6+vrPR5PdXXNpElTz5w5o+F8FEB1
7LiJNbV1aP2WXE+w8lsTbzdv/XjOPKgCJHM4HAsXLgEGDtbi/WCQBi4dOpwy
ZeqM6poahKEulxsRfhgsoKDGxkZUcagLVPB4ZiZi6ZIkwSiQjNskRIiQH7QA
kHnc7vwzeWmpqTnZ2S3a06Wuc8ViaenHp06bTr7jAOh34ODh2R9/Aqh18tRp
ILHTZ8yeM3f+vHkLli5dsW79BqQZsBTIJJDSVavXFhWdg1ww+37/g4/UXQoL
Fr8zclRmZhZKCdi4fcenI9/9YNmyFYuXLPvwo7FFxcWgHNjv2++8C5wZ8PPD
D8dkZWWj9ECwx0+Y5PF4L+j89tjkKTMQ3oIqAPz5CxYjvIXhYOy4CYCl69Zv
hF9gxU2NTUYVDkGJp06dRru8VqxY/f6oj4AMr123AbLk5Jy4oI0s8+YtnDR5
KkRWVlaCzkOHj4x8d9SChUu2bNk2ddqM1WvWx5kaCBEi5EoTAK7Ojo6is2cz
M46fOXW6qbGRnLnHF3UjQUMjQA2z6wn4Z8n50rC2B6CoqPjw4ZScnFy3293Y
1ARzcJy3qakZyCeEtvb2C9rGg7Ky8pQjRyGmurqG1AnIpupJOZKWnlFXV4cu
ofSQHDJUEekBWktKzuOlho6OjtLSMvS4TVukra+srIIDfT1hzTrAZ9B8PDML
UuIS3R7PsbT00rIyhOFgQGHh2UOAp0dToVC8L7elpQXwHAzu7Oy8oAE1aIMY
GDvy8vLRXoWLvydChAj5EQoAY0FeftrR1JwsldNeUfvz9edla9Z934YIESLk
xyxABZ0Ox7ni4oz0jFMnTzbU13e5TvvjE8DbDRs3r1q19vs2RIgQIT9agXl9
YUFBeuqxE7m5MB1Gj4S+b6O+B4FB5+jRVJj4f9+GCBEi5McmkXDY5XKVFJ87
np5+6sTJutpaRUl0nfbHKmLPlhAhQi67AKc9W3gWkBY47UU9ERMiRIgQIYkI
TJkBaUvOqZz2RE5Orcppr7h1WiFChPwzxel07tu774p6+K5uy3c6i4uKMo8f
P5mb21Bfz/2orBAhQn70AizrzJkzxUXFl/y1OublSlKA0R06cCDt2DE8az5f
cv6hBx7E7+b/uAWGFa/Xe76kJCMtPft4Zk1NDd6JKkSIkB+rVJSXnzp5qrmp
yXop5XDKsMHX3nHrbWWlZRerFnhaFi2VlZUYWgF+C/Lze3W/+tabbm7XdtGD
lJaWPv7oYz96vNVeNXWVnCvJOp6Zm5NTV1cXCATE8yAhQn70At382b8+/f/+
7/+bN3eu9WpOTs6wa4f86u5f1NfVxdfjcDi3btl68sRJjBvnzp37yU9+8h+E
wOnw4cP37NkDbFnD2wLA29uuJLxF/8MFOG1a6rHMjOO1NTVX1OKJECFXuAAC
/O35F3p2675owQLrVfUL/xUVQMC6hIWDBw70uKrb1EmTMd6WlJT853/+5//8
z/+89tpr77777siRIx966CE4/d///d9du3ZdaXgLDnS73WXnS7MzM9UnYjU1
Ab/gtEKEXFli4u3ChdyrzNKr9j57uKmpyef3k5+8+2znTsDbGVOnoW/1ow9J
Ad726NGjpaUFIoHTBoPBUaNG/fu///sTTzwBMRy8PV/62CM/QryVg0HgtOnH
gNNmANJesW8uCBFyhQvC214qv+XgbX5e3h9++7s/P/knwMwL2sdOF85f8Ltf
/3pQ/2tuHn7jC889n5GeAUA6+sPRd952+4A+fW+87vrf/PJXzz79NEAKibe4
rN27dwPe3njjjZCLy28f+yHzW4lehoUxxePxVJSVZWYcz83Jqa6q8muD1Pdo
oRAhQr5HwXi7mIe32VlZA/r2vfPW2xoaGiDl6tWr+/To+eC9923cuGn2zJlD
Bw3evm0boMq7b4+86fobAG9vv/mWhx986LVXR4TDYS7erly5EvD2N7/5DZ/f
/mDxVv2IVmNjUeFZvMdAkiTwQEZ6WnZmZk11NXB7gbRChFzhEn89AfD2mr79
gLsC3sqyPOKVV+B0586daNGgsaERfc8ZTt96483eV/eYNmUqehaG1xO6deuW
m5tbUQEsr2zfvn3Dhw//6U9/OnPmTDu8/SGu3yKwzUhPP3XyJMCs1+uF+mYd
z8zJzq4oLxecVogQIUgSx1sA0gXzF0DK3/36N9u2bXM4HCSM6Hg7eQrzvOwn
P/lJnz59BgwY0K9fv//7v//7j//4j8ceewz9D1bu+u3jP7T1W/XTsnV1mRkZ
6paD48eLCguzjh8HTltdVS12eQkRIoSUxPH2gvaB6I8++PDG664HnLzjttsW
LVwEqItS2uHtf//3f99xxx2/1OTll1/esWMH/gT0j4Dfqv81pq4uIzU1/dgx
FIDllpWWoX8yK0SIECGkXBTeXtC+n1+Qn79g/vy7bru9f+8+Y0ePQfhph7dX
X311dXW1TxP0H/pwwT90fgtgW1NdfTw9AyEt8Fv4hdPGxkZBa4UIEWIVjLcL
FyyIxmIo4I1eDN7Ksgzoiv4b4PGMDADYP/zu9x6PBy6NfPsdOMX7b5n9YNyi
f9B4G42oYJueehQzWxyyMjI62ju6ViFEiJArTBDe9unR87lnnl2xfOWK5StQ
SE9X/680ibfqP937ZO7kiZPy8/Kbm5t3bN8BuR5/5FH0r7HXrF7Tq1v3++65
98SJE+Xl5Qhv/+u//isO3paVlfXr3eeGYddlZWai9yl+KPtvI5FIZWVlRlra
saOpaampcACOyjt9+lxxcXVVVUtzs9fr/b5tFCJEyL+cADC++NzzfXv26tuj
JxBUHMaPGavibWZW/9597rjlVsDb1tbWJx57HDAWwtDB18Iv5Pri8y8QoW1r
awdY7tezF1BWgFD164IlJT/96U979uxph7cA4L//zW9BycB+/dH/qv5BrN8C
2FZVVMAYkZ+XV1Fe3trS4vf70a6M79s0IUKE/EsLoMShAwfXr1u3Yd16MgBh
g0vNTU0b16/fuWOHz+uDU6fTeWD//rmffPL+u+8tXrQoKysLbzeFq8XFxfPm
zv3gvfeXL1vmcXscDseiRYvWrFkDcGRXOjDh2bNmTZwwsVP7j6vqesK/PN4C
FQ8EAoqiiE8fCBEiJNmCXs7l0jmIvFimF9UEHf8g+K0QIUKE/AikoqLiby+8
KPBWiBAhQpIt4VC4s7NTLIQKESLk+xUpFPFIIRFEEMEbDEXFoCwkaQJtq7Ld
k1vZkVvZjn5z4LdK/TVCu3aKYqh4fJxdYaQ0I9uRQu24M7eqAx0bBWGFREwF
WWKHWVAFKqudtCqbssGMxxkJDbggI3EFWQs9QW6lNT3W065XR/NDNusHbE87
G1/BSZlLGdNhsYQTz0lcxd4CbmIwONcstN3wNr4FHdy66Eqq9OrTN44qN9us
IHKRnjfXbAlmjbKN0lF8tnETc3mWU/dUV0Lea65XcQU5aegGg5O1E8WpNp+s
7giGLvEfPAkR0qUA3pa3eU9UddR3+pucUqMz0OiUmtTfQJNLC3CqHwRQPAr6
sYuIcfmbtJgml56gyUigHUuNWK35C8olrK3JVEWdmvpd/ka2XKmJOCU0EzFk
dVzo1E+lVxNLjWahklEcab/FPBdjHgqgR2qi46mqEUY26h6gvKo5ivYVVRGp
kaiIxUVUcab9LsL/VK1RGn8jo4e2nCyOqpqb9Q95c6lKuQg/40suKmUTkbiR
LJQunaijv5G5Stx6Tls127be5MB+U61TKmtRiYekCLwVkiwBvK1o85yq6fRK
4YASDSgR9TcUldQDFKKSeRoNEPHEcUTSAnmAtUnagYQPQuiU0oOvEglwvKmE
CVLIWjRKaRYh6cnMeLp01mzSfs2SqGGDWaiEayerwYhBZUWN4yjWZhofilgN
CFgMk0KGAZT3SCOj1oy056NEMvJSWCJsYLIQp1qliHoRtzuq61GiwZB+swJm
ZXU9pm3IRWZdosYdoW86c2dlqiVICmMM2wzQVcnIyPgWIrX4KFMLKRwhvBFt
cASA4gq8FZI8UfG21Xuq2sBb2YAFOczFVbM7a/3IjISuEUIxRHqZwZMoT5tV
uTU7zkv0l1AkGNbKxfZwRgSyaKOXhdh+p3bJMI7HQEGiFokhRHY5QutnakEZ
o+JGyFoREpwtButOjtIgQ9wpxeJzEk/YmkZRTQOcmlq9jZWQ94LBc/0Sb/iI
6oaFaDsZPMSFysYpwka2dnSroCM1NA5Tak2vhs1SsCdlIiaEqxBtcAZgoifw
VkjyRF1PALzV+S3TC7gdOcIiLdn1zGM72IyYXRhDCr832cEv0WsYPGSRhygR
d2qNjqL+xaka2fcVxgwTfiXWHp4SWpVkpg+zeani6CLsjOSPaxazQ5Y7RQ0Q
PP+TSIuOQxa1SsQbDHf6ZT/GK6OmxoCi3aNQlGMD23gYe6KstXGczPchUTWz
gobnZTo9faM1fivwVkgSBeHtyepOjxSG7uNX1F9oe36DQvjVEPFrMVqCiJ5A
MZLJZozfaOp+PTJqXAprwdAfigRMhVFGrR8VKhsHZEo9AXQczVqNhDO2oQO9
qxr6A6ZOHKJ+ZCoyTE0TxtXxm1XQ6xgw0qPuSRiMXRQm62IUgRKHkXI9jZkA
10vHK7/hPZTLSB/2G9BHOQ3VVC8dVTBMOU0hzVDnLFp8WDebrWnU6rSAwhSn
F9Hilk5Xd3ikEHHLwrR/zGZA+kSvhRIhqol9SJiNbwRjjIJP6dttiQwYReBm
g0+xJwPEnYLjeoG3QpIsOr/FeGsNCt3dTJTg4BIFI5Y0rDYL3rKwybEEn4bJ
mIDZPcP6JTnK5uWZFGAuUfCOVVnMYGOsNQpbkoWJIsj0BhRTlkRZ15G5dB9a
KsjxWxjnClhs4DiNrQg1NhGnkUanlFnW4pKI8U4/4NzNAKfW/OZhgiS/+Vm8
TQ0E5E2k2wBResBSqFFuFPBWrCcISapo67eeUzpXCQd08hM2Z776gR5DXAqb
CWSUMUzHG8cyubbG6CQXMYhC5QiRkatWN8ZvLc5ahMyYHTGspcxARJeIj3C1
4RL9pMGm5Vx7cBERtgjWOYzB8Z2GeD7pZ67TqBrRTuO6N0LYgPVHzAYQijQ7
AlllQHKNNkMWLVOa/V0WhNsPUhIyi/PrJZrHTDPwUyUylWIOyPtFm6SPepEG
pz+3SjwvE5JEIfBW0ZpfyPJLhpAeKYc4kZzEViVMYuKY1cnE0Epku0Itaimz
uSm5quyLNnL5ZYWTkl8ElZFXhNWMEB3Pd5rf6qKEnBa/dpQqvQiZsqTZ6c9U
8Vbh5eWaxFzl1pT0j00jiafZrvpk0UR6izcaHAJvhSRXDLzt9Kp9J35nxHjC
9IUI0cgTRle2F9iVFWaVyzbdh9bsR72JtJaDhF2aEaK0dVk7mYtaDDjwlRgG
27mCuTXWYTEuhLKIx68p2OBnC7L6OeRXQoC3WSbesmYYeuKAIW/csXVUV6ND
PIxlbr3V+foxjJ7ieZmQZAuxfqvgmSb+NYOMOqN2wL9kBO5VJUz96gchVgOT
l0ppUaL9aihhJg6YWSwGGKcBslyq9FCASmY1g64Ox2ayjhYbNAcG6GQBq53x
D0j9htldOM3iZB1aDZspG7hVw3cfrWkr4SaN37o0vKWbB5UFgbNppJ0PjaYV
MPR7g6F2b7Cmw1Pe4ixtcpQ2dVa2uhqdfldA8ZE3i3KL5dZz261s+TVCvcMv
1m+FJFUMvFXXE3CbDCghTqewA0OmE9G9O8B0K+JqfUtbU3sHzm4WyqSXLV1V
tpjHdDolVNvUUlJe2dDS5lf0pUi+wZQqG8DBwEhH0qhlA8XcitigBOV2rhkk
mhk2BBSe2TyHc+4jB8axhbRP6NCo8Vsdb9k6GviGBxdjgGBHOtoMDPvtXulU
ZeueU+U7jhdvOla4/kgBhC3Hzu7KKT1SWFPc4ADUtTg8jJ+CBYz9XeazVMW8
ZPdUTl2/dfjF+w5CkirG+2UdOr81IZeFFzOSgRe7XHKo3eFqam3r9HjNLmyA
8Mkz+XfefteDD/yxpr6RvspATciYw+rQFFDJj9LU1oZDc1t7h9vrlWTMteRI
9I03/tGnV+8xY8eHIlGGxpBYRxqsFhRiSKMNiSWQmXWUBX4tNIzAJTvwod1F
FWRiGoU21GilYBZNVM16y6ynFlwl5gvUYNHkAH7bavJb66CDhxJSFT0WGGzW
dAvc2co2994zFRuOFqw5lLfmcP6aFDWshd/DeRCz9nDe5mNnj56taXL62Ltp
2RRhgCq9D9B4C4NIiXavRQXe/tMEfc76Cvyuvo631Z1uCWZqYV9QC9oBtGH1
QAvoGE0Y8YFfNhPoefGvHAagGzNm3O9+d8+GTVsk7emwrlbTtnf/wf59+w+/
4cbC4vPQ5smMVEHAdlzejKzc0oqqgGFDY2vHgw88dP99D9ynhQfuf/DZ514Y
P2Fy9olTgLoIb18d8Vq3n3X74IPRioq3IbIWmpKQWVNNZ7vbm5lz8mxJmS8Y
IuJDRh1DPkOJcRBirMWzab2awRDrHxQUyku+YIguxTgIYieEfFxv68k4ZvjM
xJpm1RieJXKYV1N8m3QbCGPMNI0IbwMyVaLCusVHmEEbZgAyYYZXDp1v6vws
+/zalIK1CGYPI6TNX3e0YONRPRKAd/2R/L2nKxo6vX7COcyeMXqDbpTZ+Gfd
FXbF8luAvnA4EtIEMPC76PH5fA6Ho8uvngLMFp8r2fnpZ7u/2eNyuy+5xO8u
YElHR4ckSf+0EvHzMlfAgKBgRP8l4NfsF2SCYNgr6ZFwgIKRJhyORp95+rnu
P+v2ydz50JjJSxBcPunLr/ccPJzqCSg6aFDKgeqov8BDDh1Ju7rb1ePGTQhF
o+hSbUNL/z79+/bue+ftd/7qF7/+5S9+Nfz64b179h4yeOjeA4chQTAcHfHq
6xhvVf3YTlSKFCKNAQqUfjynf7/+r7w8wrZGkoFOZEVkslIRnFE7DuEYKlBZ
UBEhqgg9L1bFBj1SoouWuOlDbDKrPYYNXmtKyVDCmA142xlQ12/9MqWWTCNp
YwHhZ79N6Si4A+GyJueXOaWAsYCoJN5uTC1ML64vru/YlVu6Vo3M00L+vrzq
VreEK+g33q/RN92FjF1k5EZfvLUsRG/8NtYTTlxh+xMAaSsrK3fs/GzhwiWL
lyw/dOgwAGb8LACngUDAisyKoqxZuw46O/q32nGy19bWjR49fvWadV999bXT
6fqudbgYAYD1+wPof3WBJfUNDWPGjT946PA/zQDj/bIOd0DxI74URACoBXyM
4mUF8TGD7+kTQyK9kUwOqXj7jIa38+Zr1FR/0oHzBkMhSTFK0S55AsHmdken
x+c3SpeU8OYt27r97KrxEyYFFcWvpgzXNjYDN76m/zVHjqU3tbY1NLcWFJ79
4IOPenS7+onH/wRZTLz9EPA2YlqrhJwePxThCUjQ47DNYMY3e/cDYr/66ghf
IOgPyoRVqNaET2SysthLinlKOIc41d2CXIQraCRTaFdj3ypsoTJZqKnEvHGM
DTrNtupBziRvt1lTP7aZuKFkdRocfh1vqdrpLcTMK1v8RlXfjG9xBXafKENw
ai4jwHFK/s7MkkaXH+5X+vmGNQbjhfgNRwvyq9sMJQS/NV/9471HA78h8q0W
/DJIpP4K2w8GmHnsWPqUqdN3fvp5bu6J7OxcwMAvdn0Zf5oPYLthw+bm5mar
ttNn8tLSM2RZjpMdlB86lDJl6owugT0ZAoVCHauqqtCpx+M9ePBwRUXlP80A
DW+19YSAbPZK1COCCo0b9FXcbTFumLkMvH36WYS3gIF+BEpGgrPF51577fX3
R33Y1NaOVKVnZb/yyohbbr71wQceWrBoSV1TM6D02vWbHv7jI72u7gkk9rUR
r48ZO94dCMKl/n36Ad6eOJOnzt+D6k628qoaYLzDhl4HaKxEoyNGAN5eBSCs
421QaXW41qzf+NhjT0ARL7z40r5Dh52+ABjscHtWrlrzpz89BXh7+213jHj1
tX+89TZguFZNBeOtH8MvC1MYXRXKV0Z9/RhRLe7VfaL7WT+lfBskcRKXS0TS
98hPXqWUh8gbSt5EI4vil827Q6b3ozSyQqJuo8On4m0gqNdUViythW056jpt
0HgmS9qj/RbVtW86VqgSWkRuNaRFeLs5vTi/rr22w/tZ1jl0VWe/KQV7TpW7
A8j4EP38K8yu3GqnMLuBsbausdnjk8z3grVkALkNzsCVg7fA7s6fLx353gdH
jx6LRmNIgKMyk2ugghADEIpAGNJ0OhyTp06vqq6GS8zSAUAuEGZ0jP57INYZ
CoVxmq9375k5a47L5cbADpGSFJSCQRLq8b8sDIVCwWAQWYh4NcRoOkMoGSqC
odygCsyG0QH/Fy1EaCdMnFxUXBxW599RbS0lTBaq5VICkoT/Xy22EBkQDMpg
6iWvPOvrCTUdroDs1biHVw0hL+6tQcydUDwZFCLoWfRLciiE1hOuUtcT0KMQ
MnFaxvFePXreNPym6vp66G7f7j8wZPCQ4TfcCEj4yCOPAZwuXrpcCoX//Oen
AVf79OozeNBgSPzQQw+7/BLmt7mn85BmoDfFZRV9eve5ftgNdU0t0DheRXgL
/DYcUZ/C1NU/99wLvXv2ufP2Ox9//Mnrr7uhX59+kyZPdXr9jW3tUOLggYP7
9Ow9aMDAG4ffdNfP766orUd2YtRClpP+sZ7SByHDJ4yjFMJ7pp8tOhWLToV2
u3YgkYaFfKxybABzB00LcUZeNXHpIR9dtYZOn7GeECLSUBXxauORxTm43BBO
4/AFj56t1dcK9BUDfd0AyO2+vKq0c/UphTUbjhZq7DcP4TAcbE8vKm5yIDPi
bLt1+6SWtg6gMfl5+VmZWWdOn1Gf1ln2Yzc4r6D9YKFweMeOT6fPmOW2WUEF
SKmsrNq6dfuKlatXr16blZUNwFVbV7dp81boVqtWr9m587O6ujoy/YkTp2Bu
DugH6JSZmZ2ZmQWMd926DQsXLtmxY2dnp7q0m5dXMPvjuR+NGbdx0+bTp/O0
/83t+mbPt0uXrVi+YtXu3Xva2to0YLvQ2Nj09dffnD9ftmHTZlACyFldXbN3
7/6ysvKt23YsXLQEDGhvby8sPLt27frFi5d98823Xq/vgoarDQ2N3367b82a
dYuXLNu2bWdjY6P6P8GbW9Zv2PT+qI+WLV+5ffvO0tIyvz/w1Ve7yysqUBUA
S9PTj0Nlly1bAQnKyysiERVXoeivvt5dVFR86HAKeGPRoqUpR45C4ktwO/7+
rSMge6ALSAr8GgGOFbfao0MerV+jSCKNfmBcogLCW5jUz5k7z6eEVVVGMtB5
7Hgm0NFbbr6lqr6+0xt46ZURAKobtmwPKopXVg4dPVbX3AYp2xzul1565epu
V3/40ZgOtxs4KvDwmgbA234D+g3IzSsA1uQLhZxe37SZs7t36/7Iw4/6Q5FA
GOFtt1EfjA5GonA6febHPa/uef+DfyyvqfPLclpW7qBrBvXvN+BgSqra372+
0WPHdb+q+4svvtzU7mjpdLpUb6h1Z2rKC3oy2nWmA/W8kkIrUVCMmlfPqCfw
cjSoHoaUbjMla4aNDQpRFrrKub+mkTzlPsm449qvdhOVeg1vHX69zXhpw/QY
vdCQ0UhChCsoI5uc/i+yS9FCgcFddbz9OrdM5dGhSEmTQyPAOu9FYcPRgn35
Ve0+yRvUX+vwG3vkJPUhbKi9wwEsLjc7Ox1mzqmp8JuWllZZVR0Mq59q1D+c
q4dwo/Y9xmBIZzI/GuF2fK/XO3fegp2ffm6HDK2tbdOmz/xi11ctLS1FReem
z5hdWHC2ra0dIPGDD8fAb0ZGJsAdTg8Y+/nnuwBaNUoZBqAePWb88uUrS0pK
IeXI90bt2bMX0sCoB3AHJPNwyhHAc5/PN3/BQqBkZeUV50rOAxQvWrzM6/OB
2efOnYNeD5cOHDwE0Ad4furU6Y8+GjN37oLc3NycEycmTJj88Zx5q1atOXeu
5ODBw+++NwoKiql8OAwAvm79prKyMigOkHnuvPmBgNTR0fnll1+P+uCjzz7f
lXE8s6GxEaB+8pTpMJRc0Djznj37xk+cnJ2TU1NTA/aDkdU1NXAJqPikydMm
TJyybfun0JwAoqFq5WXll4631R0a3pr9TodZPm7g7mMEHi4pxnrCnLnzvXKY
SZym4+2tgLdOf/D9Dz7q2aPnK6++dvJMXpvL6w+rUz8N5EOAnIC3Y8dPlCNR
r9aXNbzt37dP32eeee7NN99+4823Hn/iT/369r/h+uG7vv7GpwDeRgy8/Qhy
gcK77/5l7569AMZ9miWQYObsOVdf1f3lV0b4Q2HA5AmTpgDevvrqa24GlKiq
KZQrCNgkoJJCaa85ToWsWBcPn6kD6zhIZ0TgJhk20FVA6Ofll2u1jTUSVUpT
ayYg8ZZ7972EbdYBmmk/tR2ezcfOrjUWEBC/XaOFdUcKShodAIHZZY145XaN
wX7XpeRvyyhu8wS8BL/1BIKNzS0l50tPnjhxPC0t/WhqeuoxFW9RSEs7c/o0
cBU6FJ0tKjqTX5h5Ih8mmyXQgalQYon51w+qzedLSjw29NXhdAKE4kdFgEXA
NiHk5xfAvB6Acdeur4DKol1bIIcPH1m+YiWc1tTUjhs/qba2NmZZTCDxdsvW
7TNmfuxwOC9oT+VWrV4LAagvqAIwnDV7DgJVoMHvvvcBAC8aGoCCTpo05dTp
Mwhv4RLAMi5IxdvRY0tKzse0NQSgoACDTc3NcApMdc4n8z799HO0oAFX0UIB
oCjQbOC0dXX1kAxwe8yY8eAbVBzGWzgGrv7R6HEpKUfRWgGYt3z5KigCLml4
OxVqhxYZgEXP+viTtPSMS8fbmk6ntp5A9MqQSWhxxzEmg0x/NyFFMg8Ug9/C
CKXxW9wBQyTeVtfBzD10vqL6nnvuBYo7ZPCQp59+7nBqmluSUfoRBt4CKiLD
ahqb+/Xt16d3X+CokB7CTTfd8reXXknPynYFgghOMb9VYrEzZ8/169Nv2LVD
G9o6NeRXAJPTsnJ69ex16y23tbk8oHki4O3Pur+i4q1MAh0fe7vgvSrCuC04
jA40vsfDbbaUOIzaBDGvSjj5abzmcBDy0PSSxl7FWlOMkHi88FK2heoAb0tb
nIjf0le9RjuhQZXL3vU0Ne0eda3AoLU6oqaoSwcbUwsbHD5PMLw/rwqtJGjJ
CvDq7qbUs23ugCdo7kYGvG1obD579mxm+nGEsWnHKLzNzck9c+rUGejVEE6r
4fQpNZw4cTIjKzcP4Y4azhDHP7igGp9/Js/usZTT6Zwx6+O9+/aj0+Lic/MX
LJ41+xPAnJaWVlmWZ876ZPuOT3U/nTrzxRdfTZkyQ5Kk6upqDW/rGIVWfrtg
4WLAPXQJkBBoLVoH/uYbdf0WCDbAFwAaHAeDQaQE4HHFitU7d36q7hkrPjd6
zDiAYlwE4O3YcROAY2sYHv569zdgsMfjhVNZVkD/li3b8N4DqGB6esaGjZtn
zvoYcKBCWzQoLy8HagpIbjhBw9tsFW9zck8Ab4dxBFcn9Vjax3M+AZMQv005
chQhP1QQODM5EFwc3mrPy1R+C1AjGTNcyZjAEsf41IPxRCJmxCbLUgN49q9P
P6uuJ3wyT2WVZi415bGMzD5oPaGuXuXScqi6oXn+oiWPPvoYoChA8bJVa9wB
GS5hfitpeAsx1fVNgLf9+/X/Zu+B85VVxeWVVfWNgJNeVAp0vVAEkFPnt1HA
22JIP+TaofWt7cg8SJB6PBvhbavDLen8ttsrr4xQVxKkkNtaLzz7lsxaW+uu
wnUArxWYqrC7TG2SHL8I2tUhayRrg3E7XGYksoGjFi0LIIOttrmDVCmmAUYp
9Q4Nb31BLQ2/joR5IcparMqIrG13b0ql8RYdp+TvOVUBTKDZHfgiu3QNWrxN
wbsX4LdgW1oR4rfk23DoLQynx1vX0FBcXKwS3YwMA3LV9QT0wQTzpQ8t1Ov7
b8P/xLl+cuWCPSAAaCxZsnzd+o34QRgcwOx77LiJgLeAq1OmTF+6bPmuL7/6
Ug1ff/nV14cOq2uzgLdjx/Hx9jMWb5egvQpwaSfg7TKMt98ivAUo27hpy7x5
C/HTNEDLdes2rN+wCeNtVVU1gbdnxo2faOLt1whv1e1nYBjQb4S3oDY7Owdo
3pYt24G7Hj6c8u57HwLegjMQ3hYzeKvx24yMTCiusakJXQIDsrJzpk2fBTbz
8Hbp4RT99BLw9iTgrV9G+IY6KTpWf7sMuFeqp0YWHW+f6fazq+Z8Mh/glOyA
kOxYxnHA25tvvqWyrh7TMMjY1N6xYvU6ANg/3HNvh9sDlmh42x2aAaAiUl4F
eNun34D+A3JO52HmjHADJQgA3o54/ar/d9WoDz4E7gqIesftd/Xq2Ts1I1Ml
hOrboKFP5i/q3q3bc8+/CCgtafwW8PllDW91PYY2BDJuycAuE4gsTlAPZP2S
MXjRXtJchJxMetiARBL9WCcj3wZ1nawNkkx6wKwClUZBpeuJgwp1iyUCgQOG
/QHTYA9hf32n73hZi8MX5FWQdogZjCqQftNS1ju8O4+fQ0sEaBlBX8s9nH/8
fCMgZ0WLa3t60TqGAB/OW3+0YPfJsjYv8Fvet9qMD9G4fYGWto7SsnIAXuC3
eWfO+NmP56in2vsOV8rzMsBAwL3RY8c3NZk7u4BMIrwFyFq6bMXXu7+N4r0L
CMAvXKiurtHwttaq8DN6PaFLvEV7FcZPmAyAhpQATQWc3LdvP4G3JL89A+a1
tbVdMPB2tsFvAW9XrFgFeAtFA2ZOnTYT4BEiweaiouKR735A4O2E4nMlCClJ
fltYePb9UR9Boags8MDu3XsWLV4Kltjg7aXz25PVHZ2+oEujRhrgyPDrklBQ
Y7RThTiW3bKKQno8itTQQDtVf8GzTz+j7k8Y9eFHOafysk6egZB96sz5ylpA
MA1v+6h4W1vv9Eu79+6HUNvc1ur0pKYf735V99///g/tLg+knD7zYzh9+unn
GpqaG9sdLoS32vOyrJOnIYFL67+oUMTu/OHIm2+9A1D/xj/ecvsDwGYnTJra
8+qeTzz5VGHJ+aZ2BxRx3bDrr+l/zVd79vpC6obM5avXQoIHH3q4rKauobXD
4Q8i4FWVa6vZRu1kXGV3UNHBWRuhVAOQ0wxvYM+gNPpxwEipX9KHJ5TRjZ1s
nKrpjYdlLi2ZWzJujXGPEHi6KDMUjhmqr4j7a1w14TFoFB0kb7oB5mZ2/XlZ
p59oIZLeQtymizTjNftdkuEEyYjEpUtKqzuwP6/SxFvjwdmGowXFDY5gOFpY
255SWLs9o0h79awAbU6ANJuPnc2tauvwSeqcRQlzvs9Dvo0einglWd2oUFkN
CGx9qVnbf3ul4C1Ic0vL1Gkz1q/f1NraGpAkgJETJ06NGTsRTgFJgCJOnzEb
6CVM9gF8HA4HJIBcjY1NQDILC4vQPgSsjbeeYOLtp59+vtTA290G3kIppWVl
748afexYmhQMQkagmhMnTqmuroFL+noCxW/p9YSvzfUEAm9DNTW1QJ+ysnJk
RXF7PN9+uxfxW0hWXVMzZuyEzMwssARSOp3OyVOmoedlcDzr4082b9nmcrng
akVF1bTpM48cSY3p67eXGW87/CYPwf3FRR5Ligkm6BiBg0RcwseSIgG//euz
AGIDrxl03bAbAN+0cMPEyVMB31Izjvfu1fvmm26pqKuvaW59+OFHBw0cDHD3
4kuv/OLuX/Xs3mPazNlODSKyTp0ZPPDavr373nvv/c88+3yLw13VoPLb/n37
wyUPAgEjIIACCN366RdQ9LWDh2wAB0ry+araxx57slePXj+/6xePP/7kTTfe
3LNHzw9Hj211e1FGoMo3XD8c1P7hD/c98shjxeWVJvpJBkrQwEKhGf3rZkYo
7dcZYF2kwympkISvAAHRpJ+ZgwA3u4bPAeIqgkrTZvOqm7h3bqoiWDNxo7Xj
uk4v8NsOf5AwzCyFaDMYWhUqxjRbPXX65ROVzYCuaLuX8Tgsf2t6UXmLE/C2
ptOz90zVuiMFaGsufsVsV875JldAayfEzl78mQsCbI01jRCxwhMiV0Lc2qL0
lcNvLxivei1avAzYILDZJUuWA8ACMKItuIAqX+z6auKkaatWrV2/cTMA6dmi
IogPyvKatetnzJi9YePms2eLsTYAVUi/eMkytHl127YdQA7x+u1nn3+xfMUq
hLd7vt07++O5aO8WgB7A3YyZs1esXA0JpkyZfuxYOkTG1OdlJYCu5HrC6dNn
JkyYjDZFhMOR3d/s+XjOPMDtCxrerly1euu2HVC0z+cD2yZPnrZ23YaVq9YA
hI4bNxHhLVxatXrtlKnT165bn52TC/x2yrSZWdk5F7QFhOqq6vkLFi9cuHjN
mvVg0o4dn6LFCsDbqVNnIOxFnlm8ZDmcXorPtfcdKH5LdlizX8tOooO7CcQg
YYcEqEA4MnHytMcf/9MTT5jhySefWrp8lS8UPZlfCGzzpZdfrW1udQaCeUUl
gH6AdbfcfOsDD/7xk/kLW10epMcjh7d9+vl99z1w6y23P/Lo42W1DfVtHU89
9Zen/vzXgnOlbhJvTdKodHoDb/7j7dtuvWPG7DkODRYA1QHqAbRvu/X2Rx99
fMWadW1uH8aZTp+0YfO2e+659/bb7gADThYUUazeikIYVw3GSCFVgHILx6s0
wTPgiMQ3mRrdMOrSiE1AGea9tLVWM8w7SySgIB2jLjHUaqfGkCHXaesJGr8l
cDhA4zZCchLDrYOUpLeZ2g7vF9nn1xnMFi0aAMB+mXM+5WwNXFp/1HxGhp6m
rTtSmF3W5CQtRyQ/aNQiiGLUFgKQrgYN27WgqMcBI169pNR0eK8ovEUC6ApM
8vDhI2npGXV19SRlVbfgVlUfOHj48OEUII14kz9AXHrG8ZQjqa2tbTgxYFF7
R0djYyN6NQBYKDBhvDjc1t7e1NSMTjs7HVAQfjMCrjY1N6ccOXL0aGpzcwsm
jX6/uuFWkoK4CCgXzMCvOXR0dNbXN+AHZI1NTWAPhsTs7Fwwu7a2VpEV+EWD
CFz1+f3Hs7KhLDAPeHhdXR1+ARmuwjEQ44MHD5WWlmFXQBGQDMAZKYd4yAt8
+BK8jf+/A8VVqD4oW6gsSU6sdMjspw5foMPj7/AGjOCHU0A/DSRliAFURP3R
o0QgsrG9o6y6prnT5VUiHu3Ju8pAtIOG9k641NTpUksMhpBCY6qOUip6YiOm
3eMvr61rcbrdRu+Dg4a2ztIaiPR4lDBTKXS1rLYODIAhgGWP5hSeQWASIRUG
uFhySLqOwWfzqmzOJiSFBkOZ8DNFETkw27UNVnpM1pSh07hVaPCo8VtqjGYa
idUPVm1mg1EcfrmooRNwVd8Jhrd+Aeqm5KFvheE3y7TI/G9PVzQ4vDazLeZ2
GGCr4m1QA1jiF8VfqXgr5J8p5noC9J2AYrQ92WU0QnM67MeMS09GdkNngL6k
IeHZ0orc0wU5p/O1UJCDjs8U5EIwTnPVUIB+cUqUINe4asTnG1nIvFgDG4zi
8k+cKWxHVDYQJNdODSJKTnuZSzrzMbutjhKyWWutXzu1irv8ehGGExSiCO3Y
b2o2ZvSGb7GfMaiaaegDP2W8E9VL0tgaVTt+TZ3WSNMGjNUyRWgDhvGG/XWd
3syyFq3N4NUJsFzBJhmNR3HSluB4uiKa0ySlsK59+/GiNcT+WyqY7/nmf5lb
Wt3mxj4h7dSJK+0Ek99q98Jktlq9rmR+K+SfKcb3Ezo6vEGtNQYtMy8iBOzi
cS5FTxCQpWj0xb+9MnjQtdcOHnrt4CFJDkON36FM5ODBQ64bdn1pVZ2LmjyS
vwpVKTIZ3SVdASJjgHELzhXk+Mdvnz5AX7UrwsA6NnGcm8W9cfFrisuSbIpA
sOxX0HpCO2oz8Yq2eINoIaRhqGptHulERfPO4+fWHTHeetAXbDHjVb89viun
tKi+g6CmRFn29ji0BPCrHgRkB2GGwweXgjXtPrQf7PvulEJ+tIL3gwHeugJ0
N0coinplQKcEDr3vB1HzxszWSKmoM3HEb+XQvoMpGzZt3bhpG4QN2u/GzVqA
yM1btQMcthrBiDETGJGbt+iRm8lkpFpDOaVw66atOxrbna6AQiOMVgWNT5og
EzBr6sT8lgY9MzuanOqJ1WMXmV0Nku4lXIQVRXn4QEQGVZeS8QaJpWthor2L
WZY0bMAgrxNXP1VTK0xRhhkKdTrqV2oYvNXIql11qHjTXQTeIn7u16Gvot21
P69yY2rhuqMF61IKtMdn6raEjUcLt2cUHSuur3P4HPgWYLAN0ISBbLqaWsji
CEiOgIa3xu1D8KtdBbz1XjnfqxHyvYi5nuCleqUdVUDzSnMWhnsr1XP1GaUn
GPYqES2EjV81+EJkPBki3lDEhwIZHzKyh8I+MrFixkNGUqePTkkRIYJZudi+
qXd/hgfS4EMzN3KmTDuNGoziF2GDb8ZBEE//ifQKCaTmhN0AfzynNu8aqdmv
UD4xdLIOIQOhCq3fIrxlaD8x+BKuI9ksncAZIOi0lsbhV4Dolrd4TlQ2pxXX
pRTWHDlbc/x8Q0FdR73D1+mTqCL8dNHMYGSUq+MtIrdaXh1mfTrYqngr1hOE
JFnw/oR2jLf6hAux2aDBAWQHMSNz4hif0YD1LDijxoTVWZtBJ3zmbI7SYCgx
Tw00w4lxMn32x7GH6M4m8SMUBnAubS5pAkjQjOfBC7bHOMCRpMG4OkHSJw6K
ROlXTawmcJgpwvhVnaZnNHXGcxqGFL2sAJop64WSTnNanGa4naipMdc2yaRu
lVzTgfitSp4d5J2FxAGzIL10bXzRrQWG6dfS+ILMLXCSlpseDnZC8GmnAco5
pK8Mb+uNVkNRsw2Yd9z0FekHvUFq6wkCb4UkUXS8repo90gOsncbgz7DAYi+
T2NLwGz/OL3ThAXUv4IESgSNjmymIUCSKU6mDDBZir7y5qC6IRPMskxsJNgO
IABGFRrWLEpYQDMtoYowVZlFYDyn0JhAFevggl1NqSKyE461dxrlN4myQcd5
SjM9lPBs0CbsQAUBb4GF4hZi1siY0RM6g5xas8UZpzQRparDHfKMS06qLUlU
6bhGAbKlsS1cXU+48v6fjpB/pmjrCV6N30psL/NZAdNkjyazxfyHhB2fwc1M
mJVpiObhD1MWSeHMviOjS04Sz30kLBA91yfheKcVPXwm8XP6zH5nxXZz7KBH
IidRuukWiyVOAkCcjMF+00jWBjweUXAqsyhE2oAChbqU0xwcp9HzCJ+lCj6y
7hIqpZrAWyc1hLFjB+k3J4HYWK2TcKA5dpADH/JzIGggOZou0RUninZiV1j8
YMyzzEblJOoo+K2QZAvef6vzW5riMsTPYcwB9a5nTYlhFiMY0aqdRF+mQAMn
oCmHCb8UOMhOf5CGDtlELR/Nz32Sg7THT9QO8yVclhVy+ccUh2cNZvGWdIWJ
LVZMMwHNTxvMcRoPb2nItVbTweKtzLGExWFNiVdiKgi/NR0eE2/pMcgomqas
zAhCWmLAOMfVhtOMxShimYXORQ4i+C44aT0oIxXpNYdjh4q3Yv1WSHJF//9l
VZ3tWtsj2QVBC2UnGUNwV6pjkpBr0A8nxY4o0kKxCxrVTc1kEV6JumRDCAns
JfDWF6Twh0mPBwWDvzEgZiV+zMoqWRcjvYVG0pBFwYuXZzDpNEYD6zTT23TV
6JrSiERV01pTmoSTmjW8pdcTmLHJTxRHr0Wz7Fqtr4TVOkmrCGvJxWfTAySB
51XHafWzYZIx8yKbuqTtTxB4KySJgvcntHkl9cGEH37RQwpZe06h9oVO/RQa
p4SPO3EaHbIkKsanHRN5tQN1JRMdGDGSoVOdLeJ4h2GMgUXqKVE6RJJKCG2q
ftI2LSOyzadr69RPjYz6gWaDaTBSxWjDCSiDtac/uk6EHp2mwTIqQndIPIOD
eozW/Um/sU6DU10zejhl+ASsReaZNdVsMIo27AkS1cc2ECVqlxymSXpeo+7q
QXWnJ7Ostc2LjTT94yDca9xH817gXzTEWJoTqiB1Zwmfy7TlWnG68Voyw89G
U8H1ouwkGifpeblarN8KSbIYeNvepndPojHrLZZotD6jG/r0jowaudELOKCk
N3ufxO87dPcxCpWZjkD1HYxyPtMMC46RWWTaGColwkzcVUlI5xlAgrNEGMz2
XDM96TpsMGsnbbDpUokoVOYZJlns5CkkEvBs4CqXySL0m2KYAU5rcPoL6xzt
Xslys6ze4N1QgtY6cO18ZitimgGiwaQzLdhrAKmPcCCy2Rj++BXUsVdtRdVi
PUFIkgX9fweN35pdw8EimN6YHWQnIrDOgqK4a1gAQYcdk0sjCGVg0+yJGHNI
sNU5JJHSa8AmQhUaQxwmlvKwzhwLtBHES+KAeUDBps6ZZY7B3CL8ASMXswAi
4VKsBpNOI8Yswml+0mnkEgTtNHMqESTgS3UaiXj0TbdU3GwJ6p6uDp/U5pF0
w6wElYPA2HU6/9f9rE9eJGJkZ8YXk12bfFibFJhYTQzBpNmIbJOnJD47fKZV
KAi8FZJswesJjS5/i0dqcQda3YEWDwRJO1Bj1FO3Glpd8OvXrsKx30igBQ+R
y4WVoLySmky7asSgoGtoVTX7cUGtbpxAOzX1BEyT1AO/GvRkahGaeWQRElFW
oIU0yYNKkYwKYlWoOtgGo2pIv1mWZrDuB+QWokSmpqTBbr2UVq0Iw2AJZ291
G4a5AxynqSmR0wKs01zWmkpmTT2GK4iatppOw7eJqB2ywXQRUqI7odXjbzV8
RWiWqELdROnUbcWnUqtprVEdt1FT0+EB8+7oqnQNeoN0G83SqIjhDYl2iGmY
4Xk/LgIOoCOI9VshSRX0vCyrvD27oi27oh2FHC0Yp23qcbl+rIbK9hwIajyR
pZLIVU7qaYPTnIqObEKhTUHmMcpI6teLJhJbVZE6c+g0TEG8oOkv51ilhQ7d
FZXEpfJ2ygOMQ1glyAyqCNJmsjhLFThXs3lm8Artwmk5fLV8p9m4hWgDlWQR
bcYpt/QOI5gOxHo4yuOZQde00sZ1pueNxLgg7VJWRbvAWyFJFfS+AzSz6g5f
TYe/ttNf2xGo6Qyoxx3+Gi3UouNOdNWvXkXHOBiJzSw4vpPQgC/p8QEt6Ffr
sH71OFBL5EJKSD2akbpVRrm6VXoywyrzgDhlTeow62tEBti8lsrWEXU0Lez0
1zCnuuusRZhmUPppgyl/6npMp1HpmXvRSeknncbWlE6p3wsqb8BiZ0CvtRFY
4ztNt5AuwlfrHLix2eTFRupODtQyruig9NeYpVDW0t5j26GmXK0LVLmkyS2e
lwlJqqD1hNPQmkPRUPQCBIUXmEthI8TJEj9Yc4USOL4sBV0uVSHi4GINjpMm
/iU7G5irl3xf4mQPWxJYjYnTfuJowzEh+iBxl3KLxpFdegMlaHYHBb8VklRB
/PZ0Tadk4C0TUOMPx/TfSIyT5rIHKChsFJpgesZgu4okrk23ITGd+gCUsMHI
jcywdYm+oo9VsxMzAycL0xVhlEdiVGJs/CX41mpY4h6zq7tdg7wEr7aoeCv4
rZAkCtqfcKrGgfD2kvt+ImgTNkDGrndQHT9mHlwUyMdPfFGoGMdaPAyRqMUt
okuXRmLx0nTtVRvAjK82QRvCCSshzbAOUhc7rFAOTHzYta8Cc5u4OgW/FZJs
6ZLfXkQfSbgfWVNyYiyQZe0jkYS5nB0ysNrscykWJVadXIPDTBGXYDAmwzG2
0K6dxktzUeNXIjcr8WSXEC52YmJ3g7p0HfDbE4LfCkmm6P/fweC3ibfnS055
sQyTGyJxqPJFKrebSl9sZ49fRDxuf5HT/0s3w0LFL9qGy+eQ7+Lh+K2LPEik
XjiL4LdCki3692ouB7/9jv1OhH/lkOBikXl6WQq1WfKNxC4b8pPGC7wVkmxB
+28Bb4OhaNcrn5e7N11U97yoeeXlZIOXqir+s7bQpfozDk29NKdZ18wT19Dl
PD0Ud0W9ywejtg/yYhfBYBMMYj1BSLLFwFvjeRmPTpCPYC7X/oTLy2y71HZx
z8gSHncu3eCLpIvJcFoiNbW7ZNcS8GYG8qr5MLSrkYJMgDXEWTu6vEHwWyHJ
FuN5Wbz120vftHCpq4J8mpRYoRFCp22/Tpj4cZ98fXeDw5Zk4YufIyfFaYlt
SLjYJpE8tEyEACRSqbDgt0KSL/r7DjWc9x1CvG3hXe60T2QvOtn4rfq5l+w2
vYcMMORu+A/Za7OqDdH78LFa9VKMNY9bSnzNZhExdoc/KqJLbRgZ7Jwcp5ps
YsJp2J5QXDPwaYhXNUp/jEocifHzWnVy20mcu2ZtP4zldm2Ge4+aBd4KSbKo
/LbNy8Vbuw7VZadOMIHaK2OXuTgaCWNcUEpQW+LYdckGJ1hEkhJfmhkJlk7e
2TiYGb/oOAmsLec7OkEReCsk+aK976Dj7WXsfXH6sh4TjtY2NDW2tCoRFhUv
reMw6avrGgqKiuubWqxXw3G7KsfgBLp24kARzyeXG/ouwW92uRJX9d2HYzKE
bTJeRntwMoG3QpIt6P0yEm/jNEgSFuxmteRpc2trVXWNw+li8Afy5p44eevN
t/zh9/fW1NVzJ5hUiIBtMXxVDkdqamura2pQgOP2jk5/UNaSqelhAvvmG//o
dXXPceMnRuzRkp3hRqKhSCxEl+uVgs0trY1NzR5/AOuH4JcVvXQovq6uvdNB
GmBbRJw68hzIzq9jLHXk3po4NU3EhkTw6tLGBTsjE/RG/EtdorHdEgQ+Fs/L
hCRbzPfLwtFEZvdk34+fJhqLvfPOu7fcePOaNWvRBi0y/ZEjqQP7D7j1pltK
yyviEEhI7PT6Uo6klpSW4YLa2jt+cdfdd91+px7uuOuhBx9688230tIzgqGw
ouHt31//+9VXdR8zZlwkxllVoCqCSvH4jqam5RcWmfGRSEZm1ogRr9/zu3t+
++vfvvji3/YfOBiKRNDVcyXnb7/1dmTA3Xfd/fBDDwPCHzqcIishbi3Cxgrw
RbFl02kJTM8vTdvlDfERMkQuFHep6iKnIYk6gbSHVqjxW4G3QpIoaD8YXr9N
sFUn0tqj0djzz7/Yo9vVCxYstE7hA0o443jW6bz8UDgSHyIOH0kF5JwwcXI0
plPc5ta2gf2v6d+334MPPPTUn/785BN/+s2vfnNNvwFDBg3+8qvdkCwKePv3
N+3wllvK8ayc/n37j3j1NbS+ATFpGZnDhgy98frhjz36GMDp4IGDoIgvv/wa
kdjCwrO9e/QaOOCaRx559InHn/zVL3416JpB/Xr3/eCDj9o6OhOEJh2EL/d6
xcXhj2FDIquscZJd9pDIusSlLZjYXRJ4KyTZQuKttUHa8bFE8fa5FwD0uHgr
h6NBEFk2128jUb8UbGppc7g9GkvU4kPhrVu3d7+q+8SJkyUJ0iuhaAzwFqAP
IDf7xEmX2+10uaqra2bNnNXr6l6PPPwoUFAVb19/A+EtwK+50yAUdnl9jS1t
3oCEmCqKl0PhvfsO9u3V57URr/slKEeGUjo6O2fPnnPy5MlOh6OtrX3+gkV9
e/d58P4HnS43ZCnQ8PbGG4aXlpU5nE4w4NPPvrjjtjsAtOfOmx8hHtUl/mQn
lAAHtoJMgg8BE1wWwCmtB3b3HUdytxOEbfJe7MMsNjs9XUpkIOjSCWI9QUiy
hcHbBMPF4e18Dt4WFZ179uln33jjH23tHXAKQLpn7/6//uXpG4ffCPP3yZOn
VVRVh6OxRYuX3nvPvX179vn5nT9/5q/PjBz5HgAlwttBAwbmFRYZ8/RYXX3D
gL79rht6XWNrO1SKxFu1xEisvqll7vwFD9z/4I033Pjnp/6yfcenDg05PT7/
vHnzH/7jI/169b315luf/sszL/3tZSgCskBejDlZOSeA4t552x0NjU0hA29v
uuHGuqZmwyfRzVu29ere887b73R7/QxmJjh36BI8uRB0ySuxiaxzhizgxqQM
x3S46/JBZIh3fFGBg+ddrWt1rdMY5sT+WyHJFrQ/4VSNI0G87bJb4aCtJ7zQ
oxsfbzMzM/v07H3LTbfU1zcAWn711W7gq4BUH4z6EOAO4HTV6jWhcOSFF/52
7cDBQCwBSO++466n/vRUQAmZeFtwFq+LlpZXwnT+puE3t3U6owTeovWEqppa
mPUDg/39b38/YsRrt91yGxxDWV5/oL3T8Zen/nLdkGEQM3TwEAD23//unvrG
Jr2+kSiwYo/XN236TDD4rX+8rT4XM9YTaLy90O5wAmL37d03IyuH3HR6WYAl
PoJ992Tcort8CHW56vJdVCW4GtxlMpXfiv8XKSSZor3v4D1dy8Fb8vFKyBLZ
ZUD8tgeP34ZUvM3q36ff7bfe3tDQEJDlV18ZAaeffr4rEolEo1Egrg6PF3BY
jkQBOXt27zFx4uRwOBIMR4F2Yrw9nVfgU8Xf3t4xbtyEXt17AEOG7JEYhbcw
u588eSrA41/+/Feg01BA0bmS4dffMKBv/30HDoVjsXAkMmXqtB7drn79tdel
UFgtxbATipg2dTqw4n69+jz5xJ/aOxxgFZffKupbWrHnnnke9CxZsizSFb/9
7lBzyeCTiJLvaO3Fln7JdDec8JJyl8nE+q2QZAt+n5fLb7vsjHHWEq3rCWRi
Em+DofCkSVP69Oj17DPPpaWlO1yusLG4Chnf+PubgLeQgHxeBngLaPnYI48/
9+zzzz/7/AP3PQAxd91+55EjqeFoLEKv37q8/rvvuhuKyz1xCr0EASC8bPlK
UPvS314JAUDHYgCqKt6+/oZM7OkKg53Zubffdvuwa4cOGXTtxAmTauvq0YKz
jrfDabyNxV568SUod9asjzHe2i1gcjEnzoJqgkjSpRLumgBjw0XBYPz28N1h
8NLyxm+63Kti/VZIssV4n5eDt99x11D89VsSb5VorKW987FHH+/bq3efXn0e
uO/BvXv3B0MhZMMbb1B4qxh4269332FDhl4/7DoIP7/z5++9N6q0vAJtHsB4
O3rMuFgsdrb4HJR1/bDrHW4vqhQkOHn6TN9efW656RaXzw+ap/LwFgKcOj2+
cyWl7783qm/P3g8+8BDafsDlt3I48tCDf+x1dc8vvvw6zr7fKyQkCNoXNZok
kv6Sg1hPEJJsif+8LD5/iA/IzHoCw4JIvEU8ttPl3rHz01dfGXH90OsACRcs
XCSHwiGN3/Yy8BYp0fcnDLjmWPrx1rb2ltY2h8sTipjvI5P8FvD2fHnFwAED
rxs6rN3pwnibnXsCSgHe6wlIKr+dpuMt+c6C+aGDWKy1te3+e+8f2H/AgYOH
gELz8DZWVHJ+0ICB1w4cXFJWwbyb0OXDccqxiTn5EubR3OUgO0rMPe0SPDmq
4m+3uMiBiWlICa4nWL+GYQ0Cb4UkW/T128T2J4RsnpdxexnBbxfoj7CNAKc0
v72goWUUyKTf79/15VdAEe+9516PxwuX/vHmW8BvJ0+eyvBbY39CzNrjSH4L
uXyS/Ktf/Kp3z16paeloPQEAc/bHnwDAvjbidTjW8HYGnP799b8rUd0PUijs
8QUUY2eXy+1+4rEn+vftv2XbjkhMxds+BN5Cpdxuz9tvjwQQfuLxJ0PhcBwf
JrIGboW7LoHlolZiE9xJGz9N2CYxbg/f8RGbtV1996Vpyn7aCQJvhSRbDH6b
6P6ExAPCW4DKkW+PPJJ6LEULR1LTzpWWM/xWUkKfff7F1u07a2vrOpzOQ4cO
Qy6YuXu9XugRCxYs7tGtx5+f+ktlZVVzS4tMPC/D+xOYAHg7atRHgLdvvPEP
r88fiUbnz1/Yr3ffRx5+9OTJU6Bk77791w25btiQYYDA2sdaY5u2bOvbu88D
9z1Qcr60obFJkpU1a9c/+/RzR4+m1tXV19TUbt++84brbrhuyLCc3BMhg9/e
MOx6sBZ07t27/8033gSrhl8/HJSHLZ/KsQOBJK1exr/6HW3o8uFpyB6KL7lq
IYMMx3lkcMm+Qgmaxf/nFZJkIb/HKEcuoKBEzV8mKFrQjmNmSiILCnCs4u2z
z/fp2XtAv/6DBw4aNHDQ4IGDYa49cdIUmOMD3vbt3fe2W25rqG9obm0FJBzQ
t/8v7/7lY48+dstNt/S6uteSpcvlUAT617nSsuuvuwHQ8q47fv7wHx9xen3N
La2g85r+15zR8NZinsp49+zd36dX74H9r1m9Zp0cjkKWF1/4m/aE66bf/ua3
Q68d2qtnb6C4AVmGikCu4nMlt958KwwBd91x129+/ZuS0vIlS5apBg+69hd3
/+Luu+4GeIerM2fP8UpBSA94CyS8X+8+w64dCrg9sP+Avr36/O63vz9w8FAg
qMiEHzSGHEPu0iyMMc5UTLczLo1hJytkHaPMrSGSRalbQNxNxgZdoVkWdZdj
+qmpxzSMZwCnwSiUB3gNiVISM5VTFpo2Ey4yfWL+RqmUPA9gbfj9GtZI8b0a
IckW/LzMr+Et2fz4ncW+s+OOg46B4y1dtvIf/3j7rbfeIcOOnZ9HorHzpWUw
+x43bkJ7Zyd0ltr6hoULFwMfvv/e+1966dWt27b7gzJSDnoOHj7ywvN/e+D+
B197/Y2m1vZOp/vtd94dOfK9ylrtWzfYMKIHAWeeOm3GQw88tHLVmmA4Aijn
cLlXrFj9wvMvAnP++9/f/OrrbwKygvtjMBT5dt/+55978aEH//jKy6+WllUA
K07LOD5q1IdArR955DGoyO5v9mC0rKmte/PNt1CN3n33/TmfzAOFbQ5nJGqF
CAsQEXjL4BWZmLkXdMYYE2O9I1wbTIUEsllh04qQTHb2Kn2gROxs0y23ICFR
TWNIQhCK1nNIvzHIbBbKqopxrWXcS1IFgbdCki2Y3/qVKMk3rA3Y2kG4aciO
JoXCMDEPaEEyftWnYGpXigTRqbr1K6Yuq0Yibo+3pbXV4/OHo1FtodUI+qU2
rz8gR9RlXknPG9XzGr9qJ9V/o8BdW9vafQFJX4NVO2bU7fO1QaTKUWNkZREU
uH3+tvYOb0DSPRCJBZQQAHVHR6dP/fwXgWNh9VJA1oISVi0haCEPu2LYS2Qf
t3MmCRokEDF5dUpsvRf02MfUlAtfXBs4WM1wckTgDcO44wU3WAHcDuStTrMU
pCEzjeQkINMKOU5ASsR6gpBkC/4+GOa3GHyM/h5jOohBPGxRF52qLwsUnE05
mnbkaLoRtOPUdCKGiTQSs2m4gdaWSscT4eixDI9fpqCDtTmGkc1SI373NL1k
gycWsGIXB8gizKKjFJqR818TalAWVDTJVC1wx8M9dmWAKchEUbMKURu11LyG
A90RajbE4KQFXVm0JCyP0afmihZF+G1YAQ/zY5Q2it+K52VCkigYb9XnZRZi
wEwMiZk7vQhp6Y+K9rzsby++PHDAwEHXDLKGgbxI+zQDtUDlGqj/oviB6MCa
F+KHDhla09CUIO+Ki5kX7NYKuCOOTaAAHHtV97OVgBEDBFetsdLLDiI8fsux
waLKtvoyHiko5CeqwPBVsjj79V7GSDtP2mhm6xs/Y5zi4KDJJdYThCRX8P9D
94einL6mI4AJCJjPMIyL7jvaBD8SPXk67+ChlIOHeeFQCnvpEBGsCez0mHkP
EzFHyPSHUo56/JIBazEWcExMwyufvPVPbje3rCUaRfBXUMn5AvXAkTNHZhm4
JZdlzYcipWRBjA3kIipNd3mozo2h0lONIaZYraKm7fEgkYv2HEvI4mzWIrCX
rNMxMq/hSfW4SawnCEmyUPzWpqNZcIbPjsiOg5KFourTLiJE0UGEiY9ogU1s
DdEE0vAD1cv06SfzyClmRRujOtaFwRhz1YKNMWYF1Xja3hWHtI53EWPxmSlF
qwKN5CzUyIQN5MYSPrIRwyh9r6n9APhYJlZIZA7oxQzSa64wW6FVsbJ9Yr2F
AnZeC8ROoKvM4C07HcMayGEO4a3gt0KSKuT+hDjTOm6MbCHAVvSgpoEMGSb7
nWXSx/4SncWKikQnjZF0i0rAee7DYhSNSxdkehutnIDB1iJscIZFPzunkfZz
ncYgDJMYLwLwk5nYyCGKVucwUKlYL9mMwuTytUzVPWZXNYyW9K3hLBTHMdV6
Wymv0onF8zIhyRb8Pq/f2H9rbecYFuzgl2QOZnr1kT13Dh7DnI2DJxaMlXHf
JMghjU7UQyurYaQSShvRqQ21MUu5HJ1cD1hyEevhUc7c395Iu1p0MY7IHHRl
dw6QNeXfHY4Z7AM7K7KRt0yhm4oV6MymYjeIR8mrXModr+1Z3BJTGNwmLpEa
xHqCkGSLuT9BieIOwmvS1JScfZYdNRGM6IYsYebABa/bmlNvqpvHFN6iKL/v
IzzhYrhlGht/M7+VBhMlmq8PWBdjSbxlqsNUQTGWQK0JGAhiEIzWcMG6mUGO
dOE0ysmM08yrxEBsP+4QZrBq45TOraNZOg+QcUHcQVaxtBzmfRD7GxETeCsk
2WJZv7Xd4MSwAqLFIv5g3YEZ4yrkkjHMXRm8JVERPc/ikE+221IrsfxnQBHz
6RgD1JzezRlcOFjHWR6hxyl7wInxUMIWpqjnYgQIY5+ztybCobLWNXmMt9zb
bZrKe6ED3U27N7w4owNDjC21Ju8dLpduV4ZaetTGUwn2NnGdQBP+JvE9RiFJ
FvN9B+J9XqrB6y2ceBWUnHpHyRg+c6DafJSdnNplsfY+3qnlaXgCx1y4IJ8W
dWmPvX4eEDEGG+hkxzMtTqPQ5iKdRm3DMOJjTE35qrh3kF34pepIYhcebXEt
bO9mAg6nSzGU03hu1/D4O3u1LWpMEQJvhSRbtP+nw+ItRQ6tMGK2cPzeFtG2
7aGjSyiz9GWzW2HqwgUBOyCieVSMixJ2lvCvckGA6MV0EXyDTdt4tJPlflyo
59FsymmEDxOvqYVVUnr0WxNlDbC1JLFBSiGMpJoBXjeIWtPHKxc7n8BhdhcE
91i8zysk2UI+L8PPf63d0IppCACNThHDM03rU2Ajo+0uMlOzQYOZbZM2KxKc
V6WYnsjtklZM4+6YtdNJWmvCJh56qCKorUp8VOEhCeFqvmF8XMILOJTZTHb+
WjTlNDLeZl5gURJvZLHJQt5Eu5mFdYhkH2hSjZNwQpybaN3gh3SK9VshyRa7
/Qlc2MH4QLZSxQIUeo/grOWaBInXU4i81nJJuOM94WJPaUC2jBRk/7V7k5fO
aN0eYBps2fTFMi5OEewoxsVGwxuc51AM2bNxGpE+7mNBikyyqw0kpBuqcGuJ
+xDTkkahjcTDEOt245U0Zl2a8a0xQLPtk7pHDLzbf8dGvM8rJNnCXU9gegH3
CRrumLhHcGGKafNMN+c+YSG7PNOLSXvYrsebv1uh2B4TbBcSKW0WY0hEvfgi
+AaTZWFU4Tstwu4Z4GqzAh1hp43TLMDItATuMYPhuAiiDZgvfXC9zYzgNNqb
T+UUdsWAcY7NAoJ9U1TE+q2Q5Au5H4xs2zKxRMD0VraX6V0gxp2m4d04XPTT
O3uU7V8cIDLBIWY+zqb4G6eXmUXw4Yh9HE8yUl59+S/J8lELH0cvMAZbs5t6
7JYdKPAhnEYpifOBLP4DMmZoi+M0KzxaPGb6wXJTOK/ImRjOme8bKemKWwri
3lkTby2IatmOQjQhRfy/SCHJF2Y/mB3BYydlVmJjITy8ZVKqs9v3WWuJdBZL
cWah9qw4njYLF42jzfbUpgjTG/GLsCN79NTY6kY7RLLOHaz3yCyCx0sTCF1s
7mVuGXv3uTeRWR8gpkhdTkDsbhzlLuO7ajJdClq/Fc/LhCRVSLyN04DpdhuL
07YNdhRTSGYbwZzZ6FCW+bItsyU+R8Dtp/RHEWPGMqPdgyH8PIXYMBxBb72Z
nd3EMZ1zskyJLNFic8zYUksQe8p+mvBbiqAwNko4zTLAYWZrWc8hncbblEU/
iiJvEM9dVq7IMkwL/scYg8lFKsa3lBmWW8BraTHSbIWqNW8kIiurLeGSK+pI
T0j/foLgt0KSKObzMoVav5UjbC/g4HDU0iOoSHZKTsVbuE18umj/pq25n1/R
1/S6mAvb8WeSBOLlCw4GWlURClkeZamgYST2VRcvI7MoZxNv4zSbmnIYI/cL
WrRn4q6EMMkYUw18pgxgPMx4ia8/cYpL1YL5rA3HP4r4Xo2Q5Av+/7wYb1kG
i1us2exJykQ9s6CRlvqHEdb+awEWW3xmDIizfYLtelbSpdNF8mUldhWxi45s
FsTOCIhSLijE68zWJVkuoOEi8F2g4IsPQSyTJ51Gf7uMs9OPW2WLVZxqcqrA
W4zFQ5hdLruiuZfshgaSwzM3wuIidjsKThyKiOdlQpIuNvvB+B2cabQECpnv
8xKJo2ZHo3uflQJZXsyn/pma3svsd6JaEY+7X4IyOEHw4aEl6xZDIYM/3CK4
MGI31ljhS47YO41+fY9xGltTq9M4ixIm3trBsnXIYOGU5JB0uXY+N9NbGiEZ
w10PZ/Y/6IOOXcuhHB4V3wcTkmxh3uelJn1URyBWzGi+ZNdxrDTGhGWb3scl
HnRgdhNx95TyvrFAoxDZrwkOxiHh1hGH5Gz2gIOxy1yx5BZB2mNXd3ItxfYZ
k+U5ml1NyeEyDmlU6CqTlvBeQzCQDUOcyS0vMOMOO4hYAJxz36lceGnaaJCk
JZw7SN0I0oeUYRGxP0FI0sXmfV5mVw/95ItcNIjTwS3wS2q2gw4LunL2ZREK
uRvA+KhFgAxvgZdKwIUaLqBZDdaLsBl9OI+frAddOs3eIZTTOEOeBW+Z3/j2
mHrsYR/bQNaXScOOYswd5OskTCIXvaPWbYHU7eYupFinHop430FI8sXuezV2
IEM1V977tjRdsX171Ox6FrgwoY99PsL/Zotpmy3Is7ZhSLSyO2os4D5os+KS
ocH6uDwOMLLISVfNzmlyl05j/cAgvP1bclyiblaH3V/NdbU1Pn5iynvEnIW8
ShcaMwcU46puJzl1Yp+ucmYQ1tshvp8gJNliXb+1tk87viebHw2jXo5gkI1I
E69LUl1M+0fn1idBXFrIN5UcDmwmqgTYxjhFsM+w7L88YKJ3nE1onBdXFboI
3od22U81xnUah1JasJTz5E6mnGY7rNCLIUwLib8nhLNhm7hk2SdMWGsxw7o8
a1bBcEIMrzlzV0VknksV8f0EIckXFW/bvJb/h24hrvypLruzi+mqZpu3bD21
S8w/pnhIjNTGPPumIYj3WRIGcsPmNlHumiSNDF0bzDWD2gFrz/SoSGpazVsv
7dJp1PSZdFqXNWU16Peaobs2AxnThMjbJOOBiWhC7CODKIvJerIIngLQG6ct
HJg0iTlgNumR1VfEfjAhyRdzPYHYD8bQJHZvPE0/jMRRit/aPMFRIkyMHZFm
9ycwTFXmdzTOf5SwsdyIsWW/nCfa3NVmI5d1QwVhJO0TLvGzdxH5qAtDGXeD
WTwmHMdpVqRinEa5i+dP662hS4yS5drdUwyJVsupe6er4k+mjGlRVOY7nC2O
jBfrt0KSLeb3E2zWb2V6KcyOEXHpFgkpvAc9Ubt//8ftcVgbt9dbwDAqhyMa
mHT1+kM84+lccTekxXn2Zwf7Vpdyrlrh14ZI2xXNvUd22W1Bz96BzO1m4ZF5
P45m3Vw7rQXhW8ydSdmNDlbb4jUDwW+FJF+M/QkO8/+X2bd8PnuxLKtaH15j
JolTSkoor7C4+HxZUEVFqkOxnShywfpGLdNbrQhTcPbc4SPHikvLFMZULvzG
pWfcvs8AEYWohm12RM7qPTs/K3GLJm1geanhNEtKHqPmDQGcvAnEkFWwthDr
SGd3B+PXlH9fIsy2MboV8e4Fo0es3wpJtlj/H7odFCTSy4jOrobS8oqTp07X
NzWTnQJ1mWNpGcOGXvfzu+4uq6zuqiPHgko4GDaXO/xy6PSZvFOnz5w+nXf6
9JkzZ/Iqqmo6XB5IhtJEYhdef/2Nq6/qPnrMODhmOqwdOJATf04PjVt9FhN4
JaoZ47qUO07JFnrMLbHLSC4hjA90nDEobktgMJajvAtuHC8vc7+4rc6aPU6J
1rqI98uEJFswv+V+H4xsrrY9iAe2cBCNxl5++dUBffsvWbw0ZOnImVk5N95w
429//buqmlo7Von0t7Q7Nm3Znn3iVNgorrm1bdiQ64YMGjJ08JAhg4cMvXbo
7bfd/vijT3z62RfeQFAm8Xb0uAh+xk1MaRVej4uPAImMPghR48Mg15MMesRB
LVvbGJCkbSCf010s5HJQ16KKnLyYY0RczkzaHL86XOcn7hlulbnWiu/VCEm2
oP0Jp9D/06HX2bRjzsfw7RCYmdYB3j7/3AsAevPnLwjH2GRSKFJwtuh8WYUc
pp/X0E/QAGP3HTjU/WfdJkycHDWQs6ml7Zp+A/r17ffiiy+NHPneO2+/++en
/nLdkGED+1+zbv3GcDQGePt3Am8Z9Otyh1WcR2z8+tpoi48JDC7ZDTqJlGUL
tnFXIboslGstFUOvkMTnxna15g4x8W8B00rxQZwHmnZwTfIEsf9WSLKFfN8h
wY7JvWq2fOMU4+2C+QsR3pItX1LCbhCPJxjWcT4YCrd1OM+Vltc2Nnt9AYSK
/oC0fv2m7ld1Hzt2gsvpcnu80McBbwf0GzBwwMBTZ/IlWQ4Eg52dnStXrunZ
vee9f7gf9CB+211fT9DwFvSHI26vr765pfh8WWt7JyRDlviCiqrY5yefp3j9
AafL5ZcVu5pyxiYbBkgBQgIkjZsyTha7ebQZk8CoEQcS7WDKrjjGfuuKK2uq
jesSTEA2PMYtcUYlJqBIwW+FJFs0fuux7L/tumtwOz7ZpAFvnzPwNmThMHn5
Bfff/+AzTz/b0tIKuQAJV65ac9+99w8bct1dd/z8tddeP3HqdCgSnThxys/v
urtvrz4333jz/ffeD4Q2IIcRvx00YOCZgrO65kistr6xf99+w4YMa2hui16g
8Bb0tzucW7dtf/bZ539+591DBg/5/W/vWbZ8VafLHYrGUtOO//GhR95++10X
gDmyXwmNHz/xnt/dk5aRGf/ZN3lqLv9GWJQzs8cFTEYhF07tkEe3LWqWzr1H
3IxWG+zKMhvAJU35MSWOg6sJKYlbI1wd66AQfyAT308QkmxB75edMv6fjrXx
ayhB7aq1xV6ay5H8NkR3ariamZnVt3ffW2++rb6+AfRv2Li5f59+9/3hvgUL
Fo4bO/6WG2/esnV7OBJ9d+R7w68fDilvu/W2xx559PXX3gC8bW7V8Tav4P9v
7/qfrCqu/L8hDIPDMIiwSFDBAaxUTDQIsm5SqcSYlEZAY4hoMCZuNhqIbu1W
8WWAikm03PILIUQw2XWt/SEYE/PVlQxETZBIJDNPyQwS5j1mBt7Mu/3ulzfb
90t3nz59+j2MeXErdT7VNXW/dJ9z+nT3p8/t2+/OUc23vz1yVNLyksuXVMbO
5nyr1xNknkO/eUVKWHHNinvv/eeNG+9euGChlPnE7j0iTgYGB3uv6F20cNHv
jryW21YeHVvau2z+xfPfPDFER4/uo6vHdTADcl1LJoFM6MZ42gaL82ETxCZZ
GUgCb8nM7/A9F5pcyGkCdDCgxSe8FeUSlbJrjaJu1yrmW0a7ke+/Pezsv0WR
m5djdeQAx0XWvRHfojEi+VYS7BWLrxgaGqoGYt26z86a2bVn774wlCybHB98
c3xiMtOSrF9/R8e0js2bHojiONvH3ijWE7p7fvrzXw6lGD569PfrP7+hs2PG
bbd+VhaPkylZCq7fjp89d+C552UEK4UIIbZu3X7hjJlr19xaC4JaGN199z1d
nV2PPb47bDSipPHjn/1C3t1w58Z6lLiVJU5RZKuJzhn7ZGDs3vVdaUI46OGi
Ds1APOy3wUdlblmySBODIZdqjnVd1NLbzZnWZVTUFk0k1Ivvg/H6LaONgN8H
c8M2cqDV7dEt0IhWF931BNjbId8GYbx1W5+kuNWr/nH/098/MTQs6nUtTTLn
DMm3mx9I1AdJcr6VxT/w/quuXXGtjIqX9S6TEe+Hr17Rf+iwLJjyrf2+LC0Y
ReWxscMvv/Kf//XMXXd+YWZH58qV142Pj0vbXjzY393V/YlPfLIeRvU42bjx
nq6Zs/63/zcR+hlXK/5xHeUlH3806zJDy8DSbS/S7GZ60cIIYK2WswAdUjrT
NJ6U7WPTedz1Db9S8orVDxNcwSbszb93YLQb+fuyw579t+i0SXSE7god314w
bUf2vqxu93zIt7KDj46f+/wdd82fN1/S4PLe5Q8/8mhlbDzPbPFtVrbYn3Dh
rKs+8MFVK1evWrHqhhtu7Nux6+SpU/lvWg3f/kvBt2drwTP//ezq1ddffNHF
C+YtWHzZ4q7OC6/+4DWjo2PybhBGH/vYx2d3dR89dvzPI5X3LVx09YeuqdXr
mBzeCQGe5wM1Luhhlb+Ae6EZpA0kORdX/I3u4yud082jXeEzRpOqz1eu2JbO
bD73kbXm+JbRbqjf855x9yf4Tt3Rh0cuXE+4YHq6P8EhH8m3kjCXKL6VV8ar
Ez954aebNn19ae8yGetu/vqDNVFHfJsPnJPZ+u2c2T0vvvTr0bFxyczj1Un5
7K+j6Hw/2DQV38ow9YknvzN3ztwVH165b9/TR468tnfv9zqmTZekKvlWqpAZ
9n5v38wZM7f37fzxT17omNbxta9tDtPlC+Ktt2+8N8mmo7smURnNlq2CZMSo
TcyAvNeEplBB3/TqXmwRzNsEeJ5+gDRL8i1aoGii2nWpOy/w/gRGu6H+f9kZ
s/+WolBfmOFm1tERXL8FX/4vkhXfJunPe0X6LN+I4/iFF37WcUHHh666enz8
rBS1YcNdkm83bXpA76TN1xOy92WvhU7kLKz49v640QiieOW1q2ZMn5HuN4iS
IGo8++z/SFIt+DYrOFgq9S7pve661Q/+6793Tus4cOBHxMfMW/FPE/7UlAtH
Ou1MqAUwFZrm3il3kTa4JOba4OO68yFhRIa+2Li52GbdslUw7Fu8JZeG+Hs1
jHbDvC+rE+/LyPAAZgvsuwG4lSTJTTfdLFluzZp1u/fs3f2dIr148FCYNHK+
XbJ4ydCfhqq14FvfemTL1r5XXn21dOJP+/btl8HnR/7po9VqVYas337kUcmN
kgn7+w+/fuyNIEyG1f7bdD9Yo6FVa+0ynL7vvk0dF0xfc8vakXJFhLGU1jl9
xq5dD73++rFf/PJXn/nMGhnNqvWEVEJ1Mrjzzi9c1DN3+bIrL1t0+dDJt8mP
d5lqJlZlPccN967rw2ZaSDo6vyJuS5lTEJH6tJBl66Q0IJM49l/RU/P51BrJ
IZ0QOMUDUNnmH+ERMce3jLZDrd9WJkQa+OVJyL9xIwjTJPLT7CDIrucHaWdW
+QN1RajiMmXx7S1dM7u6u7pnd/fkqad79v33b04aGd92defx7anTIzd+6tOS
Py/5h0uWL10+b+68nlk9e/Y+JaL0A2Klt4aWLl0u5cyfO+/KK99fPnP25Kk/
93T3XNRz0cuvvpYu2EZWkgZE2a5amaers2t7364wip/cvUfml1cWLli4YP4l
N9xwozy9Jotvc+Nl3HvguedndHR2dnR+8Z4viywMFrpqafWBf8LsIGzAPMZ1
Eb4uoilB3RKUCgFVRISi3M8CiDJyKJNIw5AE1x7flaI6bus7lU0/fIE1Tume
I4q+NEWYFypXq+5n1w5MZHYtarqU6orYgJSBvW45OcbvyxjthebbqohzOlV9
Ho9KNPTQiHPHaRQ39u3/wZYt27Zs2Z79TdPWLdt/eOB5Gd8OvvmWvP7Nbz58
ZnRc8szbp0ee2rf/K1+5b+2adZs2PXDguR9NBGGusR4nB/sPf/Wr969be+uD
D/7bqbIsUd26bce27TtODL/tIYRGrR49+h+P3Xbb7dKGWpj+smzPd5/asOGu
e7507/6nv3/qdOWhhx6WGaoTNV1qpDK26H2X9syec/DQy9JCyF0kW1rkFlp3
he06y7zQEBFkFcvtiGDzUzXTBfGUW2uXXgizQ6ORJGTIbF77/eo0H5KuEKpr
WT0HECNymogcvkVKHc6HYl0bAlIUmBSYbxnthlq/rUzUY5cZTFjr4dVm4zd7
718L6oFIUy1L6UFdpjCQKTsNsmMRpqk6MXFmdGxisiaPgzDMs2VLu/LWpLxV
nawFsKwoMgRuCsPJIBgdG5+oSbVhbna1VqsGIv8fLjIWqqk4KhuGyau/PSLj
6uuv/0gt/RkvPcbJ4U8Sgo+gmgeiSD453xFzH+TGEGt01VkqYlAWyo+xOh+l
FwehEUjUJefV0PCkrzoiE2XI2fGYcCIBXUd4F5nqcynMlvEtrycw2gi4/zYA
CwJWbw+tbukd+HZXl3Hp0z94ZlvfTvlEL1Nf9jc/6FOnO3bs6tthTnU2fbq9
byc81n+zIjuRNC2qD8iRaeeub4ykUbRDKYXZyfGB0ksvHbz55ltmXTjrscef
TINbks08UZNvGhIUP1gJRGgqQ74I6aXWrJRZUvDaENo2uBli9dhOPacIO+x0
OwNJaIqo6fCVdA5JidCAgnhBoGvU5YpUBncucDXipgENmvMt/76M0VZovq2K
GHZpejg4vdqlX50haTTk8/vlly1efPmS9zJdtmRp77ITw6d0yIQG3Xh1cu3a
Wy9deOmc2XNuv339qdPllqOVJA3y8VbHZsiHBAGSp6HVCkUpJA3WyyZwbxX8
NjRPmqMUvxG076sL7D9kX2rh6tgsGosQaxTEzEV0VJ9hmm85vmW0Ffr7CTnf
wg5JhEZwnMb4TYfT4ZO3ht4+dnzw2BtF+oM6kBf/cDw9TVOWIf+bZzbZQEH3
orl7XBWn08AbfyxVa3VyOMvjserklq3bP7f+jsef2H22Oglp2bjCXlephbi+
BDs5K7pN2KClipxLiQA7xmKbzAt4DgXP9UYgtYLko24iGA4TMiekXEKabYml
McTZTM6YUJE5iggVmpNtfsrrt4x2A/FtEcCEuIdbvRe+7nGHp8XJDfWfYRvq
X3ubK3UqoQyuBJwSkD/7tA68FaorJHvoAznEJoKwHjeEs6ISgHdVznuuBMmx
Rrdn94LFTvmyAIhXhfMA7spU11vMdySrW3ptrlO3bBs8b/O9bBxaBud7FZBV
PsMcN9p9z17Upe1x5kGSaV0JHN8y/jZw+bZ4Js3IhAxiUayLohEcL6moCQ0o
kKbSx1LnCdEdy4IaQe5qoZXB/5ip6dTKTM4v6V9MrT6BhMHoBZZtMCiViMgs
eNaQQHvvk4imAicmbM4nFi9RNqj8ies0OB3ovhEA/wufXk3dYeKrC/2CT3E1
rDLuVIqThSJk5HY3WrC8gaoZT/H6LaPdKH7vUKpU67Gw40BrhMKoNaQGFBiA
IHbKl92Iwagz2BqnLI2hHV/FYASBHbAoteRAH1uSAok81C2fWFpLUwt9tyyv
OmRoVQFTKH4kIevV0gbhXxxu6SXCLbFFtjBnyzYNVNfKqpOQPhSOdrevovwZ
3/J6AqONMP8PPd9/izohxT86rvCOC/vtOR5Hodl2TpAJORx0mO0uzYX2S3C0
1wjsnHdETeH1QBjC5RJi+ncKqBRhLdBCZKb2ObheImjEJlJkuc9pgbPZIBOO
f7Pgc5qAW7mabjMWjjrLWvj0AddtstDX9ZJuX6tqTSdEipZBc7eaF4bHarx+
y2gr4PfGhd2ls3Hh0JGHGwU1BmlacNYWCGKxc5LqgsheDfDY1uzU4T2yIpgN
tFInjESuIJlBhIQKkMeQm+sZymmYgbE6t438nEm6omXLukaSrgvU9q3m9XLb
y62C6ajk2zfUPZw1LtJj6XeVU77l9QRGG2Hi2+z7CVYn9G0cjS2uC5yt6UUs
4e7hpFZTra2VdjQYaGn2jzebEwtmDBSjknFOiBctXfmwrI9kLIORD89vpUJQ
WmgmCZs6LfI8Ptv7B1zGc71kNMaETJIqTR67q/hmIstFMb1wIRyl+d+66mxE
Z8jWstzJQq9FoK7C8S2j3cjj23w9AXwiIMkeKhPcw/FaWR4SJ6bfFm/ZGgHI
oO4mzqhJsn/Om7iBExoj9q+NklyRNXLT08JgH02hIS9Co5fikMR92Y1to94r
FdLi3HVJoUgO/Jzo4JsmpaIJZeWVIp3moy/IKthpsKUQlyI5MXpX1YB9w5KQ
7maBV1SLh7nlibDsT2Av0upqIXy2sqRpgY7lhWSLOYtOC5wfW1WGXjXuiotO
OzwW9A9wfMtoI9T/iyzb67dJMYjglqcQ9lI4+qyRCIakYQY9+gybFaM1Af1f
lzKj3sd4PqpBVxRvJGoKSDSXesicliZgpfDrP0MpWTSVwMyWHLyzF9CC5hAt
Ia17ApJRVBgQWxyldaFpCDvW2V1sTV7WnhOb6MIGIM/E7JiNDfvl07SZyGJD
mIAkLfcqvYmZrC29ib4ljAeAE1Q2q4FMc+uOavqt8nACtefHw7yewGgz9HpC
8b2aSI+XxI5qTKxl93BDpCoq1pt/TKiDwjbEuoCQ3fBGx4Qqgg2hGcqGMBHG
DESY1ogDdmK6C2LMBrDuiNAgh1gEUvy8FIVw8EMNxEVU3J65dKBo7/CPE+2Z
wIrrwMbgUOUJVZM5b/Otpgnhsz9q60a2tqzbAlCiVSPV9LHieWVMzW5Qpyzl
9lgxvDE7U4GcnFGo8YaZrcyEkqd8F3e+hgweEwotKd9yfMtoJ/Lvg6nf8+JH
clHwmPm0i0mgS8PnPkRKwhApGkpKvgmhIachLrIJXA2QuhpokPzVs3w2xjU5
W78kRUG7tlNvUrImCPwzB8VpZEgMkpJs9lQkSDvQkrhy4JShZoSpwBALXL2B
DCbnzVjJ1IErnKGUhdbiRs60CTJJYJMMkztzqIlsMbfHlmfsauoZQVEirH6s
Z3ntAcj2iS0QeKZYZzYdQ4RWP4EHWo7k218z3zLaieJ7jCUV35pP9iXFGqZJ
iUrulUStoFL5I/01XZABBmMwMomUisjVCKmmYX3YMNQFQUhcyAHCQ13BBBlQ
i1B11HvtGFpiW6ulQS9F2m/qb5QEWDh8KGgAaVR9VX4sAQov5Me4yaDYKLFs
1k4wBRURYbFGQs3qFXiJGygtJNdMdA3tAa2gaxECv0HV2uwIlAKznnXLap0i
1UyviEGVgRsVUQ+PMt8y2ot8PUF2sz+ePjc4Us3SRJHKxcGA/HsaXC+y6czq
uJylEfU3SwNFhgkiPzwtV+3r1Uy7dWVAay8UaQuL/LmuAUtFnqGo2sBpV5os
lR4PEFWrlsqZirKuQpp50GQ2RQaQ66ABZVQXVFbViPAPcg6se3XwtGkg6OcB
qwWrlF7X265J58gmAJnd67q+E8bIVA5y1ATIZnce0zQ+4W7HsC0pmzSgmhi0
7LlB6xg0UNbWvx8e59+XMdoKybelkerh0sihQZnK8m//YDlNpcohebEkT/Nb
+XF661CWuT+7glJ/+rdsruQyS0qCPlV3+wcrhUCpDijKrxgVgxV1UIZ687Lg
CjrNVZS1UrsssE0V79dO0KLUFVOLQm9ZaSwDb5QPIbeknizr48K9RalUXb92
iPGPsrYEKyuPK+a4VNF1L4yxHatcUS70Zhr784qoumTytYpKriJrd1014DTT
jmWUAbq03/hKZcv9DzvA4AjoZtCxFWD/SFZf2znA4bnPtX+MH2CvK430Ywmm
rBIFGrc08vJbFRkGv9eDkvH3jHoU1+rRZJ5Elur/j5PwHL8bOb5b794V7XPm
X0vye9Xc776nib9UoD+bHAhJ470ekAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwG
g8FgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGg8Fg
MBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgMBoPBYDAYDAaDwWAwGAwGg8FgMBgM
BoPBYDAYDAaDwWD48X9VzQia
"], {{0, 207}, {464, 0}}, {0, 255},
ColorFunction->RGBColor],
BoxForm`ImageTag["Byte", ColorSpace -> "RGB", Interleaving -> True],
Selectable->False],
DefaultBaseStyle->"ImageGraphics",
ImageSize->{326., Automatic},
ImageSizeRaw->{464, 207},
PlotRange->{{0, 464}, {0, 207}}]], "Input",ExpressionUUID->"4b16c51b-1b7a-\
44dc-b7a1-4fdf2f65643d"],
Cell["\<\
If you start typing a function (or even just a word you think is related to \
what you are trying to do), it will automatically list functions starting \
with what you type.
To learn more about any of them, simply click on the little i, next to them \
to open the documentation. It includes many useful examples, how to use them \
and related functions, tutorials, or guides.
Strong Suggestion: DO NOT UNDERESTIMATE THE POWER OF THIS!!!
From my experience, 99% of the time, you can figure out how to do something \
just by typing a vaguely related word, and smartly clicking through the \
documentation. The Wolfram Language is a Knowledge Based Language. Over 5000 \
functions are built-in, so you don\[CloseCurlyQuote]t need to deal with \
importing libraries, each with their designs and conventions, etc.. Once you \
got the syntax down and can read the documentation, most of the pages will \
likely link you to what you need.\
\>", "Text",
CellChangeTimes->{{3.74616742823767*^9, 3.7461674393232946`*^9}, {
3.746167472924225*^9, 3.7461675524592495`*^9}, {3.746167599182398*^9,
3.746167618428346*^9}, {3.746167816115323*^9, 3.7461680955455923`*^9}, {
3.746168408277485*^9, 3.7461684801283736`*^9}, {3.7461685453098*^9,
3.7461686163128834`*^9}, {3.746168900826499*^9, 3.7461689193252745`*^9}, {
3.7461696748653235`*^9, 3.746169684536824*^9}, {3.7462274775512295`*^9,
3.7462274783182383`*^9}},ExpressionUUID->"ee4e7589-bbd5-48ad-8e3c-\
568e73968146"]
}, Open ]],
Cell[CellGroupData[{
Cell["Some more notes on Notebooks:", "Subsection",
CellChangeTimes->{{3.746213578255331*^9, 3.7462135842360716`*^9}, {
3.7462152908703656`*^9,
3.7462152984831142`*^9}},ExpressionUUID->"7dd81925-af04-407d-a852-\
172d7989a036"],
Cell[TextData[{
"Mathematica notebooks are the original notebook environment. Jupyter \
notebooks were designed to be like Mathematica notebooks for Python, which \
also means you are going to find a lot of similarities. If you want to change \
the type of cell, open the drop-down menu [Format]",
Cell[BoxData[
FormBox[
RowBox[{"\[Rule]", " "}], TraditionalForm]],
FormatType->"TraditionalForm",ExpressionUUID->
"fb32b694-ac58-4ea8-a514-b7150f845d26"],
"[Style] to see all kinds of cells you can have and their shortcuts."
}], "Text",
CellChangeTimes->{{3.7462135869765124`*^9, 3.7462137582838154`*^9}, {
3.7462137956571302`*^9, 3.7462138295942707`*^9}, {3.746215064680827*^9,
3.7462152842045975`*^9}, {3.7462275270419827`*^9, 3.7462275276433363`*^9}, {
3.7462278953585787`*^9, 3.746227901048441*^9}, {3.7462279562752676`*^9,
3.74622795760459*^9}, {3.746227991211417*^9,
3.746227991972698*^9}},ExpressionUUID->"5bdda456-e083-4629-9028-\
09eec4fdbb04"],
Cell[TextData[{
"To the right, you can see layers of Square brackets, that you can double \
click on, to minimize a section, indicated by a section heading (a type of \
cell).\nYou don\[CloseCurlyQuote]t use laTex for formatting, although there \
are ways to translate from one to the other. If you want to write Math in \
Mathematica, they have their own system, which will be it\[CloseCurlyQuote]s \
own notebook. If you can\[CloseCurlyQuote]t wait to get started, check out \
the Fast Introduction for Math Students ",
ButtonBox["here",
BaseStyle->"Hyperlink",
ButtonData->{
URL["http://www.wolfram.com/language/fast-introduction-for-math-students/\
en/"], None},
ButtonNote->
"http://www.wolfram.com/language/fast-introduction-for-math-students/en/"],
"."
}], "Text",
CellChangeTimes->{{3.7462279932744045`*^9, 3.7462279992430277`*^9}, {
3.7462689472687464`*^9, 3.7462690400965357`*^9}, {3.7462690796158223`*^9,
3.7462691213223352`*^9}, {3.746269178797632*^9, 3.746269223459261*^9}, {
3.7463177989683275`*^9, 3.7463178423907833`*^9}, {3.746482780782243*^9,
3.746482785295355*^9}},ExpressionUUID->"0ced5bda-6f97-48bf-bdd9-\
98fc8d150891"],
Cell["\<\
If you mark a cell or group of cells and press [delete], they will be \
deleted, so be careful with that.\
\>", "Text",
CellChangeTimes->{{3.746227959359594*^9, 3.74622796545548*^9}, {
3.746317857228776*^9,
3.746317890482188*^9}},ExpressionUUID->"68d620ff-96aa-4b0b-b6d2-\
b7d97e00b67c"],
Cell["\<\
To open a new cell, simply press the down-arrow and start typing. The default \
will be a code cell.\
\>", "Text",
CellChangeTimes->{{3.7462279025175295`*^9, 3.7462279489503326`*^9},
3.7464828640236993`*^9},ExpressionUUID->"d32750fb-133c-4fa7-a9a6-\
d91c217b0a36"]
}, Open ]],
Cell[CellGroupData[{
Cell["Why the Wolfram Language works especially well for Math", "Subsection",
CellChangeTimes->{{3.7463335238686075`*^9, 3.74633355138896*^9}, {