-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLC380-Insert-Delete-GetRandom-O(1).py
174 lines (139 loc) · 5.5 KB
/
LC380-Insert-Delete-GetRandom-O(1).py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
"""
Implement the RandomizedSet class:
bool insert(int val) Inserts an item val into the set if not present. Returns true if the item was
not present, false otherwise.
bool remove(int val) Removes an item val from the set if present. Returns true if the item was present,
false otherwise.
int getRandom() Returns a random element from the current set of elements (it's guaranteed that at
least one element exists when this method is called). Each element must have the same probability of
being returned.
Follow up: Could you implement the functions of the class with each function works in average O(1) time?
Example 1:
Input
["RandomizedSet", "insert", "remove", "insert", "getRandom", "remove", "insert", "getRandom"]
[[], [1], [2], [2], [], [1], [2], []]
Output
[null, true, false, true, 2, true, false, 2]
Explanation
RandomizedSet randomizedSet = new RandomizedSet();
randomizedSet.insert(1); // Inserts 1 to the set. Returns true as 1 was inserted successfully.
randomizedSet.remove(2); // Returns false as 2 does not exist in the set.
randomizedSet.insert(2); // Inserts 2 to the set, returns true. Set now contains [1,2].
randomizedSet.getRandom(); // getRandom() should return either 1 or 2 randomly.
randomizedSet.remove(1); // Removes 1 from the set, returns true. Set now contains [2].
randomizedSet.insert(2); // 2 was already in the set, so return false.
randomizedSet.getRandom(); // Since 2 is the only number in the set, getRandom() will always return 2.
Constraints:
(*) -2^31 <= val <= 2^31 - 1
(*) At most 10^5 calls will be made to insert, remove, and getRandom.
(*) There will be at least one element in the data structure when getRandom is called.
"""
import random
class RandomizedSet:
def __init__(self):
"""
Initialize your data structure here.
We store the reversed binary representation of the number in the trie-like structure
Note that binary representations contains '0' and '1' only.
For the chain of n operation, runtime is O(n)
"""
self.end = False # is there any number that ends here
self.neg = None
self.zeros = None
self.ones = None
self.freq = 0 # total number of elements in the trie
def insert(self, val: int) -> bool:
"""
Inserts a value to the set. Returns true if the set did not already contain the specified element.
Time complexity: O(log val)
Space complexity: O(1)
"""
if self.contains(val):
return False
self.freq += 1
if not val:
self.end = True
return True
elif val < 0 and self.neg is None:
self.neg = RandomizedSet()
self.neg.insert(-val)
return True
elif val < 0:
self.neg.insert(-val)
return True
char = val % 2
val = val // 2
if char == 0 and self.zeros is not None:
return self.zeros.insert(val)
elif char == 0:
self.zeros = RandomizedSet()
return self.zeros.insert(val)
elif self.ones is not None:
return self.ones.insert(val)
else:
self.ones = RandomizedSet()
return self.ones.insert(val)
def contains(self, val: int) -> bool:
"""
Time complexity: O(log(val))
Space complexity: O(1)
"""
if not val:
return self.end
if val < 0:
return self.neg is not None and self.neg.contains(-val)
char = val % 2
val = val >> 1
if char == 0:
return self.zeros is not None and self.zeros.contains(val)
else:
return self.ones is not None and self.ones.contains(val)
def remove(self, val: int) -> bool:
"""
Removes a value from the set. Returns true if the set contained the specified element.
Time complexity: O(log(val))
Space complexity: O(1)
"""
if not self.contains(val):
return False
self.freq -= 1
if not val:
self.end = False
return True
if val < 0:
return self.neg.remove(-val)
char = val % 2
val = val >> 1
if char == 0:
return self.zeros.remove(val)
else:
return self.ones.remove(val)
def getRandom(self) -> int:
"""
Get a random element from the set.
Time complexity: O(N), if there are N elements in the structure
Space complexity: O(1)
"""
i = random.randint(1, self.freq)
return self.getElement(i)
def getElement(self, i: int) -> int:
"""
Get the ith element.
We know that there are self.zeros.freq many numbers in the zeros group, self.ones.freq many numbers
in the ones group, and if there is a zero number
Time complexity: O(1)
Space complexity: O(1)
"""
if self.neg is not None and i <= self.neg.freq:
# the last digit is zero
return -self.neg.getElement(i)
elif self.zeros is not None and i <= getattr(self.neg, 'freq', 0) + self.zeros.freq:
return self.zeros.getElement(i - getattr(self.neg, 'freq', 0)) << 1
elif self.end and i == self.freq:
# return zero number
return 0
else:
# the digit is 1, but we need to adjust the sequential order
# to exclude zeros
i -= getattr(self.neg, 'freq', 0) + getattr(self.zeros, 'freq', 0)
return (self.ones.getElement(i) << 1) | 1