forked from mvoelk/ssd_detectors
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcrnn_data.py
169 lines (135 loc) · 5.97 KB
/
crnn_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import numpy as np
import os
import cv2
from sl_utils import polygon_to_rbox
def crop_words(img, boxes, height, width=None, grayscale=True):
"""
# Note
make sure that the vertices of all boxes are inside the image
"""
#plt.figure(figsize=[12]*2)
#plt.imshow(img[:, :, (2,1,0)]/255)
#self.plot_gt(i, show_labels=False)
#plt.show()
words = []
for j in range(len(boxes)):
h, w = img.shape[:2]
if boxes.shape[1] == 4:
# box case
box = np.round(boxes[j] * [w, h, w, h]).astype(np.int32)
xmin, ymin, xmax, ymax = box
word_w, word_h = xmax - xmin, ymax - ymin
word_ar = word_w / word_h
word_h = int(height)
word_w = int(round(height * word_ar))
word = img[ymin:ymax,xmin:xmax,:]
word = cv2.resize(word, (word_w, word_h), interpolation=cv2.INTER_CUBIC)
else:
# polygon case
box = np.reshape(boxes[j], (-1,2))
rbox = polygon_to_rbox(box)
word_w, word_h = rbox[2]*w, rbox[3]*h
word_ar = word_w / word_h
word_h = int(height)
word_w = int(round(height * word_ar))
src = np.asarray(box*[w,h], np.float32)
dst = np.array([
[0, 0],
[word_w, 0],
[word_w, word_h],
[0, word_h]], dtype=np.float32)
M = cv2.getPerspectiveTransform(src, dst)
word = cv2.warpPerspective(img, M, (word_w, word_h), flags=cv2.INTER_CUBIC)
if grayscale:
word = cv2.cvtColor(word, cv2.COLOR_BGR2GRAY)
word = cv2.normalize(word, word, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX)
word = word[:,:,None]
word = word.astype(np.float32)
if width is not None:
tmp_word = word[:,:width,:]
word = np.ones([height, width, tmp_word.shape[2]])
word[:,slice(0, tmp_word.shape[1]), :] = tmp_word
words.append(word)
return words
class InputGenerator(object):
"""Model input generator for cropping bounding boxes."""
def __init__(self, gt_util, batch_size, alphabet, input_size=(255,32),
grayscale=True, max_string_len=30):
self.__dict__.update(locals())
def generate(self, train=True):
gt_util = self.gt_util
alphabet = self.alphabet
batch_size = self.batch_size
width, height = self.input_size
max_string_len = self.max_string_len
inputs = []
targets = []
i = gt_util.num_samples
while True:
while len(targets) < batch_size:
if i == gt_util.num_samples:
idxs = np.arange(gt_util.num_samples)
np.random.seed(1337)
np.random.shuffle(idxs)
i = 0
print('NEW epoch')
idx = idxs[i]
i += 1
self.idx = idx
img_name = gt_util.image_names[idx]
img_path = os.path.join(gt_util.image_path, img_name)
img = cv2.imread(img_path)
#mean = np.array([104,117,123])
#img -= mean[np.newaxis, np.newaxis, :]
boxes = np.copy(gt_util.data[idx][:,:-1])
texts = np.copy(gt_util.text[idx])
# drop boxes with vertices outside the image
mask = np.array([not (np.any(b < 0.) or np.any(b > 1.)) for b in boxes])
boxes = boxes[mask]
texts = texts[mask]
if len(boxes) == 0: continue
try:
words = crop_words(img, boxes, height, width, self.grayscale)
except Exception as e:
import traceback
print(traceback.format_exc())
print(img_path)
continue
# drop words with width > height here
mask = np.array([w.shape[1] > w.shape[0] for w in words])
words = np.asarray(words)[mask]
texts = texts[mask]
inputs.extend(words)
targets.extend(texts)
# shuffle batch
idxs_batch = np.arange(len(inputs))
np.random.shuffle(idxs_batch)
inputs = [inputs[j] for j in idxs_batch]
targets = [targets[j] for j in idxs_batch]
#yield inputs[:batch_size], targets[:batch_size]
source_str = np.array(targets[:batch_size])
images = np.ones([batch_size, width, height, 1])
labels = -np.ones([batch_size, max_string_len])
input_length = np.zeros([batch_size, 1])
label_length = np.zeros([batch_size, 1])
for j in range(batch_size):
images[j] = inputs[j].transpose(1,0,2)
input_length[j,0] = max_string_len
label_length[j,0] = len(source_str[j])
for k, c in enumerate(source_str[j][:max_string_len]):
if not c in alphabet or c == '_':
#print('bad char', c)
labels[j][k] = alphabet.index(' ')
else:
labels[j][k] = alphabet.index(c)
inputs_dict = {
'image_input': images,
'label_input': labels,
'input_length': input_length, # used by ctc
'label_length': label_length, # used by ctc
'source_str': source_str, # used for visualization only
}
outputs_dict = {'ctc': np.zeros([batch_size])} # dummy
yield inputs_dict, outputs_dict
inputs = inputs[batch_size:]
targets = targets[batch_size:]