forked from JunwookHeo/YOLO-OT
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrain.py
227 lines (172 loc) · 9.4 KB
/
Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import torch
import pandas as pd
import argparse
import importlib
import time
from YOT_Base import YOT_Base
from ListContainer import *
from YOTMCLS import *
from YOTMROLO import *
from YOTMCLS_PM import *
from coord_utils import *
from logger import logger as LOG
class Train(YOT_Base):
class Results:
def __init__(self):
self.sum_loss = 0
self.sum_iou = [0, 0]
self.frame_cnt = 0
def __init__(self, argvs = []):
super(Train, self).__init__(argvs)
self.isTrainWithGt = False
self.log_interval = 1
self.result_columns=['Train_Loss', 'Validate_Loss', 'Train_YOT_IoU', 'Validate_YOT_IoU']
self.Report = pd.DataFrame(columns=self.result_columns)
## Change configuration
opt = self.update_config()
self.data_path = opt.data_path
self.epochs = opt.epochs
self.save_weights = opt.save_weights
self.mode = opt.run_mode
self.model_name = opt.model_name
self.lr = opt.learning_rate
def update_config(self):
parser = argparse.ArgumentParser()
parser.add_argument("--data_path", type=str, default="../rolo_data", help="path to data config file")
parser.add_argument("--epochs", type=int, default=100, help="size of epoch")
parser.add_argument("--save_weights", type=bool, default=True, help="save checkpoint and weights")
parser.add_argument("--run_mode", type=str, default="train", help="train, validate or test mode")
parser.add_argument("--model_name", type=str, default="YOTMLLP", help="class name of the model")
parser.add_argument("--learning_rate", type=float, default=0.00001, help="Learning rate for networks")
args, _ = parser.parse_known_args()
return args
def proc(self):
self.pre_proc()
for epoch in range(self.epochs):
eresult = self.initialize_epoch_processing(epoch)
listContainer = ListContainer(self.dataset, self.data_path, self.batch_size, self.seq_len, self.img_size, self.mode)
for lpos, dataLoader in enumerate(listContainer):
path = listContainer.get_list_info(lpos)
self.initialize_list_loop(path)
for dpos, (frames, fis, locs, labels) in enumerate(dataLoader):
fis = Variable(fis.to(self.device))
locs = Variable(locs.to(self.device))
labels = Variable(labels.to(self.device), requires_grad=False)
self.processing(epoch, lpos, dpos, frames, fis, locs, labels, eresult)
self.train_with_gt(epoch, lpos, dpos, frames, fis, locs, labels, eresult)
self.finalize_list_loop()
self.finalize_epoch_processing(epoch, eresult)
self.post_proc()
def train_with_gt(self, epoch, lpos, dpos, frames, fis, locs, labels, result):
# Traing with labels.
if self.isTrainWithGt == True:
w = frames.size(3)
h = frames.size(2)
locs[:, :, 0] = labels[:, :, 0]/w
locs[:, :, 1] = labels[:, :, 1]/h
locs[:, :, 2] = labels[:, :, 2]/w
locs[:, :, 3] = labels[:, :, 3]/h
locs[:, :, 4] = 1
self.processing(epoch, lpos, dpos, frames, fis, locs, labels, result)
def processing(self, epoch, lpos, dpos, frames, fis, locs, labels, result):
outputs = self.model(fis, locs)
img_frames = self.get_last_sequence(frames)
predicts = self.get_last_sequence(outputs)
yolo_locs = self.get_last_sequence(locs)
targets = self.get_last_sequence(labels)
for i, (f, l) in enumerate(zip(img_frames, targets)):
targets[i] = coord_utils.location_to_normal(f.shape[1], f.shape[0], l)
target_values = self.model.get_targets(targets.clone())
loss = self.loss(predicts, target_values)
loss.backward()
self.optimizer.step()
self.optimizer.zero_grad()
result.sum_loss += float(loss.data)
result.frame_cnt += len(predicts)
if dpos % self.log_interval == 0:
LOG.info('Train pos: {}-{}-{} [Loss: {:.6f}]'.format(epoch, lpos, dpos, loss.data/len(predicts)))
predict_boxes = []
yolo_boxes = []
target_boxes = []
for i, (f, p, y, t) in enumerate(zip(img_frames, predicts, yolo_locs, targets)):
p = self.model.get_location(p)
predict_boxes.append(coord_utils.normal_to_location(f.shape[1], f.shape[0], p))
yolo_boxes.append(coord_utils.normal_to_location(f.shape[1], f.shape[0], y))
target_boxes.append(coord_utils.normal_to_location(f.shape[1], f.shape[0], t))
LOG.debug(f"\tPredict:{p.cpu().int().data.numpy()}, YOLO:{y[0:4].cpu().int().data.numpy()}, GT:{t.cpu().int().data.numpy()}")
iou = coord_utils.bbox_iou(torch.stack(predict_boxes, dim=0), torch.stack(target_boxes, dim=0), False)
yiou = coord_utils.bbox_iou(torch.stack(yolo_boxes, dim=0), torch.stack(target_boxes, dim=0), False)
result.sum_iou[0] += float(torch.sum(iou))
result.sum_iou[1] += float(torch.sum(yiou))
LOG.info(f"\tIOU : {iou.data}")
def pre_proc(self):
m = importlib.import_module(self.model_name)
mobj = getattr(m, self.model_name)
self.model = mobj(self.batch_size, self.seq_len).to(self.device)
LOG.info(f'\n{self.model}')
self.loss = self.model.get_loss_function()
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr)
self.model.load_checkpoint(self.model, self.optimizer, self.weights_path)
self.model.train() # Set in training mode
def post_proc(self):
LOG.info(f'\n{self.model}')
if self.save_weights is True:
self.model.save_weights(self.model, self.weights_path)
def initialize_list_loop(self, name):
self.list_name = name
def finalize_list_loop(self):
pass
def initialize_epoch_processing(self, epoch):
return self.Results()
def finalize_epoch_processing(self, epoch, result):
avg_loss = result.sum_loss/result.frame_cnt
train_iou = [result.sum_iou[0]/result.frame_cnt, result.sum_iou[1]/result.frame_cnt]
eval_result = self.evaluation()
validate_loss = float(eval_result.sum_loss/eval_result.frame_cnt)
validate_iou = [eval_result.sum_iou[0]/eval_result.frame_cnt, eval_result.sum_iou[1]/eval_result.frame_cnt]
self.model.train()
if self.save_weights is True:
self.model.save_checkpoint(self.model, self.optimizer, self.weights_path)
self.Report = self.Report.append({self.result_columns[0]:avg_loss, self.result_columns[1]:validate_loss,
self.result_columns[2]:train_iou[0], self.result_columns[3]:validate_iou[0]}, ignore_index=True)
LOG.info(f'Train_YOLO_IoU : {train_iou[1]}')
LOG.info(f'Validate_YOLO_IoU : {validate_iou[1]}')
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
LOG.info(f'\n{self.Report}')
LOG.info(f'LR={self.lr}')
def evaluation(self):
eresult = self.Results()
self.model.train(False)
eval_list = ListContainer(self.dataset, self.data_path, self.batch_size, self.seq_len, self.img_size, 'validate')
for dataLoader in eval_list:
for frames, fis, locs, labels in dataLoader:
fis = Variable(fis.to(self.device))
locs = Variable(locs.to(self.device))
labels = Variable(labels.to(self.device), requires_grad=False)
with torch.no_grad():
outputs = self.model(fis, locs)
img_frames = self.get_last_sequence(frames)
predicts = self.get_last_sequence(outputs)
yolo_predicts = self.get_last_sequence(locs)
targets = self.get_last_sequence(labels)
norm_targets = targets.clone()
for i, (f, l) in enumerate(zip(img_frames, norm_targets)):
norm_targets[i] = coord_utils.location_to_normal(f.shape[1], f.shape[0], l)
target_values = self.model.get_targets(norm_targets)
eresult.sum_loss += self.loss(predicts, target_values)
predict_boxes = []
for i, (f, o, y) in enumerate(zip(img_frames, predicts, yolo_predicts)):
o = self.model.get_location(o)
predict_boxes.append(coord_utils.normal_to_location(f.size(1), f.size(0), o.clamp(min=0)))
yolo_predicts[i] = coord_utils.normal_to_location(f.size(1), f.size(0), y.clamp(min=0))
iou = coord_utils.bbox_iou(torch.stack(predict_boxes, dim=0), targets, False)
yiou = coord_utils.bbox_iou(yolo_predicts.float(), targets, False)
eresult.sum_iou[0] += float(torch.sum(iou))
eresult.sum_iou[1] += float(torch.sum(yiou))
eresult.frame_cnt += len(iou)
return eresult
def main(argvs):
train = Train(argvs)
train.proc()
if __name__=='__main__':
main('')