-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathhire_flyers.py
268 lines (248 loc) Β· 10.2 KB
/
hire_flyers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
# Copyright (c) 2021 kamyu. All rights reserved.
#
# Facebook Hacker Cup 2021 Final Round - Problem C. Hire Flyers
# https://www.facebook.com/codingcompetitions/hacker-cup/2021/final-round/problems/C
#
# Time: O(N * (logN)^2), pass in PyPy2 but Python2
# Space: O(NlogN)
#
from collections import defaultdict
from bisect import bisect_left
from copy import deepcopy
# Template:
# https://github.com/kamyu104/GoogleKickStart-2021/blob/main/Round%20F/festival.py
class BIT(object): # 0-indexed.
def __init__(self, n):
self.__bit = [0]*(n+1) # Extra one for dummy node.
def add(self, i, val):
i += 1 # Extra one for dummy node.
while i < len(self.__bit):
self.__bit[i] += val
i += (i & -i)
def query(self, i):
i += 1 # Extra one for dummy node.
ret = 0
while i > 0:
ret += self.__bit[i]
i -= (i & -i)
return ret
# Template:
# https://github.com/kamyu104/FacebookHackerCup-2021/blob/main/Round%203/auth_ore_ization.py
class SegmentTree2D(object): # 0-based index
def __init__(self, N, build_leaf_fn, build_parent_fn, query_fn, update_fn, get_fn): # modified
self.tree = [None]*(2*N)
self.base = N
self.query_fn = query_fn
self.update_fn = update_fn
self.get_fn = get_fn # modified
for i in xrange(self.base, self.base+N):
self.tree[i] = build_leaf_fn(i-self.base) # modified
for i in reversed(xrange(1, self.base)):
self.tree[i] = build_parent_fn(self.tree[2*i], self.tree[2*i+1]) # modified
def update(self, i, v, h): # modified, Time: O((logN)^2), Space: O(NlogN)
x = self.base+i
while x >= 1:
self.update_fn(self.tree[x], v, h)
x //= 2
def query(self, L, R, v): # modified, Time: O((logN)^2), Space: O(NlogN)
if L > R:
return 0 # modified
L += self.base
R += self.base
result = None
while L <= R:
if L & 1: # is right child
result = self.query_fn(result, self.get_fn(self.tree[L], v)) # modified
L += 1
if R & 1 == 0: # is left child
result = self.query_fn(result, self.get_fn(self.tree[R], v)) # modified
R -= 1
L //= 2
R //= 2
return result
class Segment(object):
def __init__(self, i, r, c, p, d, t=0):
self.i = i # agent's index
self.r = r # segment's initial row
self.c = c # segment's initial column
self.p = p # segment length
self.d = d # direction
self.t = t # turns taken by the agent before reaching the segment's initial row/column
def get_time_val(self, N):
return N * (self.t-self.r-self.c) + self.i
def __cmp__(self, other):
return cmp((self.r, self.c), (other.r, other.c))
def trim_segment(s, a, b, horizon):
s = deepcopy(s)
if s.d == R or s.d == D: # forward segment
sv1 = s.c if horizon else s.r # first value
sv2 = sv1+(s.p-1) # last value
t1 = max(a-sv1, 0) # truncation at start
t2 = max(sv2-b, 0) # truncation at end
if horizon:
s.c += t1
else:
s.r += t1
s.t += t1
s.p -= t1+t2
else: # backward segment
sv2 = s.c if horizon else s.r # last value
sv1 = sv2-(s.p-1) # first value
t1 = max(a-sv1, 0) # truncation at start
t2 = max(sv2-b, 0) # truncation at end
if horizon:
s.c -= t2
else:
s.r -= t2
s.t += t2
s.p -= t1+t2
return s
def merge_opposite_segements(forward_segment, backward_segment, horizon):
nc = backward_segment.c-forward_segment.c+1 if horizon else backward_segment.r-forward_segment.r+1
t1 = forward_segment.t # time for forward_segment to reach start
t2 = backward_segment.t+(nc-1)-int(backward_segment.i < forward_segment.i) # time for backward_segment to reach start
mid = (forward_segment.c if horizon else forward_segment.r)+(t2-t1)//2 # last value painted over by backward_segment
return [trim_segment(backward_segment, -INF, mid, horizon), trim_segment(forward_segment, mid+1, INF, horizon)]
def process_linear_segments(segments, horizon, trimmed_segments):
# collect and sort forward / backward segments
d1, d2 = (R, L) if horizon else (D, U)
forward_segments = [(s.r+s.c, -s.i, s) for s in segments if s.d == d1]
backward_segments = [(-(s.r+s.c), -s.i, s) for s in segments if s.d == d2]
forward_segments.sort(), backward_segments.sort()
# reduce forward / backward segments independently
trimmed_forward_segments = []
last = -INF
for _, _, s in forward_segments:
s = trim_segment(s, last+1, INF, horizon) # trim to after last
if s.p > 0: # include if not obsolete
trimmed_forward_segments.append(s)
last = max(last, (s.c if horizon else s.r)+(s.p-1))
trimmed_backward_segments = []
last = INF
for _, _, s in backward_segments:
s = trim_segment(s, -INF, last-1, horizon) # trim to before last
if s.p > 0: # include if not obsolete
trimmed_backward_segments.append(s)
last = min(last, (s.c if horizon else s.r)-(s.p-1))
# merge forward / backward segments
events = []
for i, s in enumerate(trimmed_forward_segments):
sv = s.c if horizon else s.r
events.append((sv, 1, i))
events.append((sv+s.p, 0, i))
for i, s in enumerate(trimmed_backward_segments):
sv = s.c if horizon else s.r
events.append((sv-(s.p-1), 3, i))
events.append((sv+1, 2, i))
events.sort()
idxs = [-1]*2
for i, (v, t, idx) in enumerate(events):
# update set of ongoing segments
idxs[t//2] = idx if t%2 else -1
# process ongoing segments?
if i+1 == len(events) or v == events[i+1][0]:
continue
segments = []
if idxs[0] >= 0 and idxs[1] >= 0:
segments = merge_opposite_segements(trimmed_forward_segments[idxs[0]], trimmed_backward_segments[idxs[1]], horizon)
elif idxs[0] >= 0:
segments = [trimmed_forward_segments[idxs[0]]]
elif idxs[1] >= 0:
segments = [trimmed_backward_segments[idxs[1]]]
for s in segments:
s = trim_segment(s, v, events[i+1][0]-1, horizon)
if s.p > 0:
trimmed_segments.append(s)
def hire_flyers():
def build_leaf(i): # Total Time: O(NlogN), Total Space: O(N)
return (sorted(keys[i]), BIT(len(keys[i])))
def build_parent(x, y): # Total Time: O(NlogN), Total Space: O(NlogN)
keys1, keys2 = (x[0] if x else []), (y[0] if y else [])
i = j = 0
keys = []
while i < len(keys1) or j < len(keys2):
if j == len(keys2) or (i < len(keys1) and keys1[i] < keys2[j]):
keys.append(keys1[i])
i += 1
else:
keys.append(keys2[j])
j += 1
return (keys, BIT(len(keys)))
def get(x, v): # sum(val[x] for x in keys if x > v), Time: O(logN)
keys, bit = x
return bit.query(len(keys)-1) - bit.query(bisect_left(keys, v+1)-1)
def query(x, y):
return y if x is None else x+y
def update(x, v, d): # Time: O(logN)
keys, bit = x
bit.add(bisect_left(keys, v), d)
N = input()
row_segments, col_set = defaultdict(list), defaultdict(list)
for i in xrange(1, N+1):
r, c, p, d = raw_input().strip().split()
r, c, p, d = int(r), int(c), int(p), DIRS[d]
s = Segment(i, r, c, p, d)
if s.d == R or s.d == L:
row_segments[s.r].append(s)
else:
col_set[s.c].append(s)
# reduce each relevant row / column to disjoint segments
trimmed_segments = []
for segments in row_segments.itervalues():
process_linear_segments(segments, True, trimmed_segments)
for segments in col_set.itervalues():
process_linear_segments(segments, False, trimmed_segments)
# compute base answer
result = 0
for s in trimmed_segments:
result = (result + s.i*s.p) % MOD
# consider 4 different rotations of the grid
for r in xrange(4):
# rotate everything 90 degrees clockwise
for s in trimmed_segments:
r, c, d = s.r, s.c, s.d
s.r = c
s.c = -r
s.d = (d+1)%4
# consider 2 different vertical flips of the grid
for _ in xrange(2):
# flip everything vertically
for s in trimmed_segments:
s.r = -s.r
if s.d == U:
s.d = D
elif s.d == D:
s.d = U
# assemble list of line sweep events and distinct D segment columns
events, col_set = [], set()
for s in trimmed_segments:
if s.d == R:
events.append((s.r, 1, s))
elif s.d == D:
events.append((s.r, 0, s))
events.append((s.r+(s.p-1), 2, s))
col_set.add(s.c)
events.sort()
sorted_col = sorted(col_set)
# initialize 2D segment tree
keys = [set() for _ in xrange(len(col_set))]
for s in trimmed_segments:
if s.d == D:
keys[bisect_left(sorted_col, s.c)].add(s.get_time_val(N))
st = SegmentTree2D(len(col_set), build_leaf_fn=build_leaf, build_parent_fn=build_parent, query_fn=query, update_fn=update, get_fn=get)
# line sweep to subtract R segments covered by D ones
for _, t, s in events:
a = bisect_left(sorted_col, s.c)
v = s.get_time_val(N)
if t == 1:
b = bisect_left(sorted_col, s.c+s.p)-1
result = (result - s.i*st.query(a, b, v)) % MOD
else:
st.update(a, v, 1 if t == 0 else -1)
return result
MOD = 10**9+7
INF = float("inf")
U, R, D, L = range(4)
DIRS = {'N':U, 'E':R, 'S':D, 'W':L}
for case in xrange(input()):
print 'Case #%d: %s' % (case+1, hire_flyers())