-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathcamera_pi.py
140 lines (118 loc) · 5.84 KB
/
camera_pi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# USAGE
# python pi_surveillance.py --conf conf.json
import io
import time
import argparse
import warnings
import datetime
import imutils
import json
import time
import cv2
import numpy as np
import os
import scipy.misc
import picamera
from base_camera import BaseCamera
from picamera.array import PiRGBArray
from picamera import PiCamera
class Camera(BaseCamera):
@staticmethod
def frames():
with picamera.PiCamera() as camera:
camera.vflip = True
# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-c", "--conf", required=True,
help="path to the JSON configuration file")
args = vars(ap.parse_args())
# filter warnings, load the configuration and initialize the Dropbox
# client
warnings.filterwarnings("ignore")
conf = json.load(open(args["conf"]))
# let camera warm up
print("[INFO] warming up...")
time.sleep(conf["camera_warmup_time"])
# initialize the camera and grab a reference to the raw camera capture
camera.resolution = tuple(conf["resolution"])
camera.framerate = conf["fps"]
rawCapture = io.BytesIO()
# allow the camera to warmup, then initialize the average frame, last
# uploaded timestamp, and frame motion counter
avg = None
lastUploaded = datetime.datetime.now()
motionCounter = 0
imgCounter = 0
# capture frames from the camera
for _ in camera.capture_continuous(rawCapture, format="jpeg", use_video_port=True):
# grab the raw NumPy array representing the image and initialize
# the timestamp and occupied/unoccupied text
rawCapture.seek(0)
yield rawCapture.read()
data = np.fromstring(rawCapture.getvalue(), dtype=np.uint8)
# "Decode" the image from the array, preserving colour
frame = cv2.imdecode(data, 1)
rawCapture.seek(0)
rawCapture.truncate(0)
timestamp = datetime.datetime.now()
text = "No motion detected.."
# resize the frame, convert it to RGB,
# and make a grayscale copy and blur it
frame = cv2.cvtColor(imutils.resize(frame, width=500), cv2.COLOR_BGR2RGB)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)
# if the average frame is None, initialize it
if avg is None:
print("[INFO] starting background model...")
avg = gray.copy().astype("float")
rawCapture.truncate(0)
continue
# accumulate the weighted average between the current frame and
# previous frames, then compute the difference between the current
# frame and running average
cv2.accumulateWeighted(gray, avg, 0.5)
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(avg))
# threshold the delta image, dilate the thresholded image to fill
# in holes, then find contours on thresholded image
thresh = cv2.threshold(frameDelta, conf["delta_thresh"], 255,
cv2.THRESH_BINARY)[1]
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)
cnts = cnts[0] if imutils.is_cv2() else cnts[1]
# loop over the contours
for c in cnts:
# if the contour is too small, ignore it
if cv2.contourArea(c) < conf["min_area"]:
continue
# compute the bounding box for the contour, draw it on the frame,
# and update the text
(x, y, w, h) = cv2.boundingRect(c)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)
text = "Motion Detected!"
# draw the text and timestamp on the frame
ts = timestamp.strftime("%A %d %B %Y %I:%M:%S%p")
cv2.putText(frame, "Room Status: {}".format(text), (10, 20),
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
cv2.putText(frame, ts, (10, frame.shape[0] - 10), cv2.FONT_HERSHEY_SIMPLEX,
0.35, (0, 0, 255), 1)
# check to see if the room is occupied
if text == "Motion Detected!":
# check to see if enough time has passed between uploads
if (timestamp - lastUploaded).seconds >= conf["min_upload_seconds"]:
# increment the motion counter
motionCounter += 1
# check to see if the number of frames with consistent motion is
# high enough
if motionCounter >= conf["min_motion_frames"]:
# update the last uploaded timestamp and reset the motion
# counter
print("[INFO] Motion detected!")
os.system('./pushbullet.sh "Alert Motion Detected"')
scipy.misc.imsave('./saved_imgs/outfile'+str(imgCounter)+'.jpg', frame)
imgCounter += 1
lastUploaded = timestamp
motionCounter = 0
# otherwise, the room is not occupied
else:
motionCounter = 0