-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathdist_launch.py
109 lines (89 loc) · 4.59 KB
/
dist_launch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# codebase: torch.distributed.launch.py
import sys
import subprocess
import os
from argparse import ArgumentParser, REMAINDER
def parse_args():
"""
Helper function parsing the command line options
@retval ArgumentParser
"""
parser = ArgumentParser(description="PyTorch distributed training launch "
"helper utility that will spawn up "
"multiple distributed processes")
# Optional arguments for the launch helper
parser.add_argument("--nnodes", type=int, default=1,
help="The number of nodes to use for distributed "
"training")
parser.add_argument("--node_rank", type=int, default=0,
help="The rank of the node for multi-node distributed "
"training")
parser.add_argument("--nproc_per_node", type=int, default=1,
help="The number of processes to launch on each node, "
"for GPU training, this is recommended to be set "
"to the number of GPUs in your system so that "
"each process can be bound to a single GPU.")
parser.add_argument("--master_addr", default="127.0.0.1", type=str,
help="Master node (rank 0)'s address, should be either "
"the IP address or the hostname of node 0, for "
"single node multi-proc training, the "
"--master_addr can simply be 127.0.0.1")
parser.add_argument("--master_port", default=2901, type=int,
help="Master node (rank 0)'s free port that needs to "
"be used for communication during distributed "
"training")
parser.add_argument("-m", "--module", default=False, action="store_true",
help="Changes each process to interpret the launch script "
"as a python module, executing with the same behavior as"
"'python -m'.")
# positional
parser.add_argument("training_script", type=str,
help="The full path to the single GPU training "
"program/script to be launched in parallel, "
"followed by all the arguments for the "
"training script")
# rest from the training program
parser.add_argument('training_script_args', nargs=REMAINDER)
return parser.parse_args()
def main():
args = parse_args()
# world size in terms of number of processes
dist_world_size = args.nproc_per_node * args.nnodes
# set PyTorch distributed related environmental variables
current_env = os.environ.copy()
current_env["MASTER_ADDR"] = args.master_addr
current_env["MASTER_PORT"] = str(args.master_port)
current_env["WORLD_SIZE"] = str(dist_world_size)
processes = []
if 'OMP_NUM_THREADS' not in os.environ and args.nproc_per_node > 1:
current_env["OMP_NUM_THREADS"] = str(1)
print("*****************************************\n"
"Setting OMP_NUM_THREADS environment variable for each process "
"to be {} in default, to avoid your system being overloaded, "
"please further tune the variable for optimal performance in "
"your application as needed. \n"
"*****************************************".format(current_env["OMP_NUM_THREADS"]))
for local_rank in range(0, args.nproc_per_node):
# each process's rank
dist_rank = args.nproc_per_node * args.node_rank + local_rank
current_env["RANK"] = str(dist_rank)
current_env["LOCAL_RANK"] = str(local_rank)
# spawn the processes
cmd = [sys.executable, "-u"]
if args.module:
cmd.append("-m")
cmd.append(args.training_script)
cmd.append("dist.local_rank={}".format(local_rank))
cmd.append("dist.nproc_per_node={}".format(args.nproc_per_node))
cmd.append("dist.world_rank={}".format(dist_rank))
cmd.append("dist.world_size={}".format(dist_world_size))
cmd.extend(args.training_script_args)
process = subprocess.Popen(cmd, env=current_env)
processes.append(process)
for process in processes:
process.wait()
if process.returncode != 0:
raise subprocess.CalledProcessError(returncode=process.returncode,
cmd=cmd)
if __name__ == "__main__":
main()