-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChapter03.lyx
503 lines (390 loc) · 9.34 KB
/
Chapter03.lyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
#LyX 2.3 created this file. For more info see http://www.lyx.org/
\lyxformat 544
\begin_document
\begin_header
\save_transient_properties true
\origin unavailable
\textclass classicthesis
\use_default_options true
\maintain_unincluded_children false
\language american
\language_package default
\inputencoding utf8
\fontencoding global
\font_roman "default" "default"
\font_sans "default" "default"
\font_typewriter "default" "default"
\font_math "auto" "auto"
\font_default_family default
\use_non_tex_fonts false
\font_sc false
\font_osf false
\font_sf_scale 100 100
\font_tt_scale 100 100
\use_microtype false
\use_dash_ligatures true
\graphics default
\default_output_format default
\output_sync 0
\bibtex_command default
\index_command default
\paperfontsize default
\spacing single
\use_hyperref false
\papersize default
\use_geometry false
\use_package amsmath 1
\use_package amssymb 1
\use_package cancel 1
\use_package esint 1
\use_package mathdots 1
\use_package mathtools 1
\use_package mhchem 1
\use_package stackrel 1
\use_package stmaryrd 1
\use_package undertilde 1
\cite_engine biblatex
\cite_engine_type numerical
\biblio_style plainnat
\biblatex_bibstyle numeric-comp
\biblatex_citestyle numeric-comp
\use_bibtopic false
\use_indices false
\paperorientation portrait
\suppress_date false
\justification true
\use_refstyle 0
\use_minted 0
\index Index
\shortcut idx
\color #008000
\end_index
\secnumdepth 2
\tocdepth 2
\paragraph_separation indent
\paragraph_indentation default
\is_math_indent 0
\math_numbering_side default
\quotes_style english
\dynamic_quotes 0
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\html_math_output 0
\html_css_as_file 0
\html_be_strict false
\end_header
\begin_body
\begin_layout Chapter
Rad50
\end_layout
\begin_layout Standard
\begin_inset CommandInset label
LatexCommand label
name "ch:Rad50"
\end_inset
Ei choro aeterno antiopam mea, labitur bonorum pri no.
His no decore nemore graecis.
In eos meis nominavi, liber soluta vim cu.
Sea commune suavitate interpretaris eu, vix eu libris efficiantur.
\end_layout
\begin_layout Section
Some Formulas
\end_layout
\begin_layout Standard
Due to the statistical nature of ionisation energy loss, large fluctuations
can occur in the amount of energy deposited by a particle traversing an
absorber element
\begin_inset Foot
status collapsed
\begin_layout Plain Layout
Examples taken from Walter Schmidt's great gallery:
\begin_inset Newline newline
\end_inset
\begin_inset Flex URL
status collapsed
\begin_layout Plain Layout
http://home.vrweb.de/~was/mathfonts.html
\end_layout
\end_inset
\end_layout
\end_inset
.
Continuous processes such as multiple scattering and energy loss play a
relevant role in the longitudinal and lateral development of electromagnetic
and hadronic showers, and in the case of sampling calorimeters the measured
resolution can be significantly affected by such fluctuations in their
active layers.
The description of ionisation fluctuations is characterised by the significance
parameter
\begin_inset Formula $\kappa$
\end_inset
, which is proportional to the ratio of mean energy loss to the maximum
allowed energy transfer in a single collision with an atomic electron:
\begin_inset Marginal
status open
\begin_layout Plain Layout
You might get unexpected results using math in chapter or section heads.
Consider the
\family typewriter
pdfspacing
\family default
option.
\end_layout
\end_inset
\begin_inset Formula
\[
\kappa=\frac{\xi}{E_{\textrm{max}}}
\]
\end_inset
\begin_inset Formula $E_{\textrm{max}}$
\end_inset
is the maximum transferable energy in a single collision with an atomic
electron.
\begin_inset Formula
\[
E_{\textrm{max}}=\frac{2m_{\textrm{e}}\beta^{2}\gamma^{2}}{1+2\gamma m_{\textrm{e}}/m_{\textrm{x}}+\left(m_{\textrm{e}}/m_{\textrm{x}}\right)^{2}}\ ,
\]
\end_inset
where
\begin_inset Formula $\gamma=E/m_{\textrm{x}}$
\end_inset
,
\begin_inset Formula $E$
\end_inset
is energy and
\begin_inset Formula $m_{\textrm{x}}$
\end_inset
the mass of the incident particle,
\begin_inset Formula $\beta^{2}=1-1/\gamma^{2}$
\end_inset
and
\begin_inset Formula $m_{\textrm{e}}$
\end_inset
is the electron mass.
\begin_inset Formula $\xi$
\end_inset
comes from the Rutherford scattering cross section and is defined as:
\begin_inset Formula
\begin{eqnarray*}
\xi=\frac{2\pi z^{2}e^{4}N_{\textrm{Av}}Z\rho\delta x}{m_{\textrm{e}}\beta^{2}c^{2}A}=153.4\frac{z^{2}}{\beta^{2}}\frac{Z}{A}\rho\delta x\quad\textrm{keV},
\end{eqnarray*}
\end_inset
where
\end_layout
\begin_layout Standard
\begin_inset Tabular
<lyxtabular version="3" rows="6" columns="2">
<features tabularvalignment="middle">
<column alignment="left" valignment="top">
<column alignment="left" valignment="top">
<row>
<cell alignment="left" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $z$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="left" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
charge of the incident particle
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="left" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $N_{\textrm{Av}}$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="left" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
Avogadro's number
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="left" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $Z$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="left" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
atomic number of the material
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="left" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $A$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="left" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
atomic weight of the material
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="left" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\rho$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="left" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
density
\end_layout
\end_inset
</cell>
</row>
<row>
<cell alignment="left" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
\begin_inset Formula $\delta x$
\end_inset
\end_layout
\end_inset
</cell>
<cell alignment="left" valignment="top" usebox="none">
\begin_inset Text
\begin_layout Plain Layout
thickness of the material
\end_layout
\end_inset
</cell>
</row>
</lyxtabular>
\end_inset
\end_layout
\begin_layout Standard
\begin_inset Formula $\kappa$
\end_inset
measures the contribution of the collisions with energy transfer close
to
\begin_inset Formula $E_{\textrm{max}}$
\end_inset
.
For a given absorber,
\begin_inset Formula $\kappa$
\end_inset
tends towards large values if
\begin_inset Formula $\delta x$
\end_inset
is large and/or if
\begin_inset Formula $\beta$
\end_inset
is small.
Likewise,
\begin_inset Formula $\kappa$
\end_inset
tends towards zero if
\begin_inset Formula $\delta x$
\end_inset
is small and/or if
\begin_inset Formula $\beta$
\end_inset
approaches
\begin_inset Formula $1$
\end_inset
.
\end_layout
\begin_layout Standard
The value of
\begin_inset Formula $\kappa$
\end_inset
distinguishes two regimes which occur in the description of ionisation
fluctuations:
\end_layout
\begin_layout Enumerate
A large number of collisions involving the loss of all or most of the incident
particle energy during the traversal of an absorber.
\begin_inset Separator latexpar
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
As the total energy transfer is composed of a multitude of small energy
losses, we can apply the central limit theorem and describe the fluctuations
by a Gaussian distribution.
This case is applicable to non-relativistic particles and is described
by the inequality
\begin_inset Formula $\kappa>10$
\end_inset
(i.
\begin_inset space \thinspace{}
\end_inset
e., when the mean energy loss in the absorber is greater than the maximum
energy transfer in a single collision).
\end_layout
\end_deeper
\begin_layout Enumerate
Particles traversing thin counters and incident electrons under any conditions.
\begin_inset Separator latexpar
\end_inset
\end_layout
\begin_deeper
\begin_layout Standard
The relevant inequalities and distributions are
\begin_inset Formula $0.01<\kappa<10$
\end_inset
, Vavilov distribution, and
\begin_inset Formula $\kappa<0.01$
\end_inset
, Landau distribution.
\end_layout
\end_deeper
\begin_layout Section
Various Mathematical Examples
\end_layout
\begin_layout Standard
If
\begin_inset Formula $n>2$
\end_inset
, the identity
\begin_inset Formula
\[
t[u_{1},\dots,u_{n}]=t\bigl[t[u_{1},\dots,u_{n_{1}}],t[u_{2},\dots,u_{n}]\bigr]
\]
\end_inset
defines
\begin_inset Formula $t[u_{1},\dots,u_{n}]$
\end_inset
recursively, and it can be shown that the alternative definition
\begin_inset Formula
\[
t[u_{1},\dots,u_{n}]=t\bigl[t[u_{1},u_{2}],\dots,t[u_{n-1},u_{n}]\bigr]
\]
\end_inset
gives the same result.
\end_layout
\end_body
\end_document