-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpgls_resids re headmass.R
240 lines (189 loc) · 8.43 KB
/
pgls_resids re headmass.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
###Note the dataframe 'limits', created from 'Audiograms linked to anatomy.R'
###is required to run this code
library(patchwork)
library(ggrepel)
#ensure phylogeny matches dataframe
#remake comparative data frame object with averaged congeners
#rename phylogeny tips to matching with the species for which audiogram is available
birdtreels$tip.label[14]<-"Corvus_cornix" #renamed from Corvus_albus
birdtreels$tip.label[51]<-"Phalacrocorax_carbo" #rename "phalacrocorax_lucidus"
birdCDO<-comparative.data(phy = birdtreels,data = avgdf,#[avgdf$Category!="Terrestrial",]
names.col = Binomial,
vcv = TRUE, na.omit = FALSE,
warn.dropped = TRUE)
#check any tips dropped between linking phylogeny and dataframe
birdCDO$dropped
############RUN PGLS############
####scaling vs head mass########
####list of pgls models to run (only models with head mass are used)####
pgls_todo_hm<- c("log(TM_FP)~log(HM)",
"log(COffset)~log(HM)",
"log(UH)~log(HM)",
"log(TMA)~log(HM)",
"log(ECD)~log(HM)",
"log(TM)~log(HM)",#
"log(FP)~log(HM)",#
"log(RW)~log(HM)",
"log(ES)~log(HM)",
"log(Air)~log(HM)",#
"log(CL)~log(HM)",
"log(CV)~log(HM)")
####list of expected geometric coefficients for___###
geomcoefs<-c(0,#impedance-matching
0.33,
0.33,
0,
0.33,#auditory endorgan
0.67,#input/output areas
0.67,
0.67,
0.33,#stiffness
1,
0.33,#columella size
1)
#######functional category list#######
categorylist<-c(rep("Impedance matching",4),
"Auditory endorgan length",
rep("Input/output areas",3),
rep("Stiffness",2),
rep("Columella size",2))
#creates list of model outputs 'pgls_model_list'
#dataframe with results 'hm'
source("pgls_HM.R")
# list of models predicted by hm are in an object 'pgls_model_list'
pgls_models_list
#list of the original regressions here:
pgls_todo_hm
#########get residuals of a pgls of measure~head mass as a dataframe#####
getresids_as_df<-function(i){
residtest<-as.data.frame(residuals(pgls_models_list[[i]]))
residtest$resid_bname<-row.names(residtest)
resid_measure<-function(){
paste0("resid_",pgls_todo_hm[i])
}
residtest<-setNames(residtest,c(resid_measure(),"resid_bname"))
}
#############create list of dataframes containing residuals##############
resids_df_list<-list()
for(i in seq_along(pgls_todo_hm)){
resids_df_list[[i]]<-assign("toadd",getresids_as_df(i))
}
#for(i in seq_along(resids_df_list)){
#limit2<-limits
#limit2<-full_join(limits,resids_df_list[[i]],by = c("spp_aud" = "resid_bname"))
#
#}
#join residual data into single dataframe
joined<-limits %>% full_join(.,resids_df_list[[1]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[2]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[3]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[4]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[5]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[6]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[7]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[8]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[9]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[10]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[11]],by = c("spp_aud" = "resid_bname"))%>%
full_join(.,resids_df_list[[12]],by = c("spp_aud" = "resid_bname"))
#only keep audiogram species
joined<-joined[which(!is.na(joined$aud_rel)),]
names(joined)
#remove tilda from names to not mess up pgls formulas based on names
joined<-joined %>% rename_with(~ gsub("~", "vs", .x, fixed = TRUE))
residlist<-gsub("[()]","_",names(joined)[27:38])
joined<-setNames(joined,c(names(joined)[1:26],residlist))
names(joined)
#make the comparative data object for pgls point to your new
#residual data
birdCDO<-comparative.data(phy = birdtreels,data = joined,#[avgdf$Category!="Terrestrial",]
names.col =binomial,
vcv = TRUE, na.omit = F,
warn.dropped = TRUE)
#check any tips dropped between linking phylogeny and dataframe
birdCDO$dropped
############get model list#########3
modellist_bs<-paste0("bestsensitivity~",residlist)
modellist_lf<-paste0("log(LowHzlimit)~",residlist)
modellist_hf<-paste0("log(HighHzlimit)~",residlist)
modellist_bh<-paste0("log(besthz)~",residlist)
residlist
#note same object name for category list but different order relative to non-resid pgls
categorylist_lf<-c("Impedance match",
"Impedance match",
"Impedance match",
"Impedance match",
"Auditory endorgan length",
"Input/output areas",
"Input/output areas",
"Input/output areas",
"Stiffness",
"Stiffness",
"Columella size",
"Columella size")
categorylist_bs<-categorylist_lf
categorylist_bh<-categorylist_lf
categorylist_hf<-categorylist_lf
#pgls_models(modellist_bs[[2]])
###########recreate the pgls forumula list to include the residuals#################
####now the same scripts can be run for analysis for each part of the audiogram####
source("pgls_audiogram_lf.R")
# high frequency limit ----------------------------------------------------
source("pgls_audiogram_hf.R")
source("pgls_audiogram_bh.R")
source("pgls_audiogram_bs.R")
### combine results from regressions for each measure into a single datagrame
audio_pgls_results<-bind_rows(audiogrampgls_bh,
audiogrampgls_bs,
audiogrampgls_lf,
audiogrampgls_hf)
audio_pgls_results$CI95_low<-audio_pgls_results$Estimate-audio_pgls_results$`Std. Error`*1.96
audio_pgls_results$CI95_high<-audio_pgls_results$Estimate+audio_pgls_results$`Std. Error`*1.96
#############formatting table###############
#combine estimate +/- 95 CI into one cell
audio_pgls_results$pglsslope<-paste0(audio_pgls_results$Estimate," (",
format(round(audio_pgls_results$CI95_low, 3), nsmall = 3),
",",
format(round(audio_pgls_results$CI95_high, 3), nsmall = 3),
")")
#split up model column
spltmodel<-strsplit(audio_pgls_results$Model,"~")
audio_pgls_results$`Audiogram metric`<-unlist(lapply(spltmodel, `[[`, 1))
audio_pgls_results$anattraitx<-unlist(lapply(spltmodel, `[[`, 2))
#only keep significant relationships
audio_pgls_results<-audio_pgls_results %>%
select(`Audiogram metric`,
category,
Coefficients,
pglsslope,
Adj_Rsquared,
P.val,
Lambda)%>%
filter(Coefficients!="(Intercept)" &
P.val <0.05)
#arrange by audiogram metric, category, and R2
audio_pgls_results <-audio_pgls_results %>%
arrange(factor(audio_pgls_results$`Audiogram metric`),
factor(category,levels = c("Impedance match",
"Stiffness",
"Input/output areas",
"Auditory endorgan length",
"Columella size")),
desc(Adj_Rsquared))
# remove the "log" from 'Coefficients'
#audio_pgls_results$xmodel_nolog<-numeric()
for(i in seq_along(audio_pgls_results$Coefficients)){
audio_pgls_results$Coefficients[i]<-gsub("[\\(\\)]", "", regmatches(audio_pgls_results$Coefficients, gregexpr("\\(.*?\\)", audio_pgls_results$Coefficients))[[i]])
}
#visualize the table better using the flextable package
flexall<-flextable(audio_pgls_results) %>% add_header_lines(
values = "Table X. ") %>%
#bold(i = ~ P.val < 0.05) %>% # select columns add: j = ~ Coefficients + P.val
autofit()
flexall
#write table to word file
toprint<-read_docx() #create word doc object
body_add_flextable(toprint,flexall)#add pgls output table
body_end_section_landscape(toprint)
#write.csv(intra,"E:/Analysis_plots/scalingintra feb 17.csv")
print(toprint,target = paste0(choose.dir(),"/pgls_resid_35 db cutoff with na_oct22.docx"))