-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbas.html
441 lines (395 loc) · 14.2 KB
/
bas.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
<!DOCTYPE html>
<html >
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<title>Untitled</title>
<meta name="description" content="Untitled">
<meta name="generator" content="bookdown 0.7 and GitBook 2.6.7">
<meta property="og:title" content="Untitled" />
<meta property="og:type" content="book" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="Untitled" />
<meta name="author" content="Jiangyu Wang">
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="apple-mobile-web-app-capable" content="yes">
<meta name="apple-mobile-web-app-status-bar-style" content="black">
<script src="libs/jquery-2.2.3/jquery.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<script src="libs/kePrint-0.0.1/kePrint.js"></script>
<link rel="stylesheet" href="css\style.css" type="text/css" />
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<li><a href="./">rBAS中文文档</a></li>
<li class="divider"></li>
<li class="chapter" data-level="1" data-path=""><a href="#bas"><i class="fa fa-check"></i><b>1</b> BAS案例二:龙门起重机运动控制</a><ul>
<li class="chapter" data-level="1.1" data-path=""><a href="#section-1.1"><i class="fa fa-check"></i><b>1.1</b> 问题背景</a></li>
<li class="chapter" data-level="1.2" data-path=""><a href="#section-1.2"><i class="fa fa-check"></i><b>1.2</b> 优化问题抽象</a></li>
<li class="chapter" data-level="1.3" data-path=""><a href="#section-1.3"><i class="fa fa-check"></i><b>1.3</b> 优化理论</a></li>
<li class="chapter" data-level="1.4" data-path=""><a href="#section-1.4"><i class="fa fa-check"></i><b>1.4</b> 优化结果</a></li>
</ul></li>
<li class="divider"></li>
<li><a href="https://bookdown.org" target="blank">本书基于 bookdown 编写</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./">Untitled</a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="header">
<h1 class="title">Untitled</h1>
<h4 class="author"><em>Jiangyu Wang</em></h4>
<h4 class="date"><em>2018骞<b4>9鏈<88>7鏃<a5></em></h4>
</div>
<div id="bas" class="section level1">
<h1><span class="header-section-number">第 1 章</span> BAS案例二:龙门起重机运动控制</h1>
<blockquote>
<p>由群友李晓晓同学提供案例。</p>
</blockquote>
<div id="section-1.1" class="section level2">
<h2><span class="header-section-number">1.1</span> 问题背景</h2>
<p>龙门起重机(gantry crane),如图<a href="#fig:gc">1.1</a>所示,是水平桥架设置在两条支腿上构成门架形状的一种桥架型起重机。起重小车trolley在桥架上运行,利用绳索(cable)一类的柔性体连接负载(load)。在负载的输送过程中,load的摆动问题一直是影响吊车装运效率提高的一大难题。</p>
<div class="figure" style="text-align: center"><span id="fig:gc"></span>
<img src="img/gc.png" alt="龙门起重机示意" width="70%" />
<p class="caption">
图 1.1: 龙门起重机示意
</p>
</div>
<p>模型可以简化为图<a href="#fig:gc2">1.2</a>。重物通过绳索与小车相连,小车在外力的作用下水平运动,小车质量为M(kg),重物的质量为m(kg),绳索的长度为r(m),<span class="math inline">\(\theta\)</span>为摆角,x表示水平方向上的位移。</p>
<div class="figure" style="text-align: center"><span id="fig:gc2"></span>
<img src="img/gc2.png" alt="龙门起重机模型" width="60%" />
<p class="caption">
图 1.2: 龙门起重机模型
</p>
</div>
</div>
<div id="section-1.2" class="section level2">
<h2><span class="header-section-number">1.2</span> 优化问题抽象</h2>
<p>优化的变量为<code>bang-coast-bang</code>控制中,<span class="math inline">\(x = [tp_1,tp_2,tf]^T\)</span>,两个给予脉冲加速度激励的时段以及全部的作业时间,以此来使得负载的摆角(优化目标)最小。</p>
<p>取小车的位置x,摆角<span class="math inline">\(\theta\)</span>作为系统的广义坐标系。小车和负载在t时刻的位置坐标如式<a href="#eq:loadposition">(1.1)</a>所示。</p>
<span class="math display" id="eq:loadposition">\[\begin{equation}
\begin{cases}
x_M(t)&=&x(t)\\
y_M(t)&=&0 \\
x_m(t)&=&x(t)+rsin\theta(t)\\
t_m(t)&=&-rco\theta(t)
\end{cases}
\tag{1.1}
\end{equation}\]</span>
<p>因此,对<span class="math inline">\(t\)</span>求导,得到小车和负载的速度分量如式<a href="#eq:speedp">(1.2)</a>所示。</p>
<span class="math display" id="eq:speedp">\[\begin{equation}
\begin{cases}
\dot{x}_M(t) &=& \dot{x}_t\\
\dot{y}_M(t) &=& 0\\
\dot{x}_m(t) &=& \dot{x}(t)+r\dot{\theta}(t)cos\theta(t)\\
\dot{y}_m(t) &=& r\dot{\theta}(t)sin\theta(t)
\end{cases}
\tag{1.2}
\end{equation}\]</span>
<p>系统动能如式<a href="#eq:kineticenergy">(1.3)</a>:</p>
<span class="math display" id="eq:kineticenergy">\[\begin{equation}
\begin{split}
T = &\frac{1}{2}MV_M^2(t) + \frac{1}{2}mV_m^2(t) \\
=&\frac{1}{2}M(\dot{x}_M^2(t)+\dot{y}_M^2(t))+\frac{1}{2}m(\dot{x}_m^2(t)+\dot{y}_m^2(t))\\
=&\frac{1}{2}M\dot{x}_M^2(t) + \frac{1}{2}m\dot{x}_m^2(t) + \\
&\frac{1}{2}mr^2\dot{\theta}^2(t) + mr\dot{x}(t)\dot{\theta}(t)cos\theta(t)
\end{split}
\tag{1.3}
\end{equation}\]</span>
<p>势能如式<a href="#eq:potentialenergy">(1.4)</a>:</p>
<span class="math display" id="eq:potentialenergy">\[\begin{equation}
P = -mgrcos\theta(t)
\tag{1.4}
\end{equation}\]</span>
<p>通过式<a href="#eq:potentialenergy">(1.4)</a>和式<a href="#eq:kineticenergy">(1.3)</a>,我们可以得到拉格朗日方程,即<span class="math inline">\(L = T -P\)</span>。根据欧拉-拉格朗日方程(Euler-Lagrangian equation),龙门起重机的动力学模型如式<a href="#eq:EL">(1.5)</a>所示。</p>
<span class="math display" id="eq:EL">\[\begin{equation}
\frac{d}{dt}[\frac{\partial{L}}{\partial{\dot{q_k}}}] - \frac{\partial{L}}{\partial{q_k}}=Q_k, \quad k=1,\cdots,n
\tag{1.5}
\end{equation}\]</span>
<p>其中,<span class="math inline">\(n\)</span>表示系统的自由度,<span class="math inline">\(\{q_1,\cdots,q_n\}\)</span>表示广义坐标集合,<span class="math inline">\(\{Q_1,\cdots,Q_n\}\)</span>表示广义的驱动力(对应于各自的广义坐标)。把摆角作为广义坐标,可以得到式<a href="#eq:thetaEL1">(1.6)</a>。</p>
<span class="math display" id="eq:thetaEL1">\[\begin{equation}
\frac{d}{dt}[\frac{\partial{L}}{\partial{\dot{\theta}}}] - \frac{\partial{L}}{\partial{\theta}}=0
\tag{1.6}
\end{equation}\]</span>
<p>第一项为<span class="math inline">\(mr^2\ddot{\theta}(t)+mr\ddot{x}(t)cos\theta(t)\)</span>,第二项为<span class="math inline">\(-mgrsin\theta(t)\)</span>,代入式<a href="#eq:thetaEL1">(1.6)</a>中可以得到<span class="math inline">\(\theta\)</span>的求解方程,即式<a href="#eq:thetaEL2">(1.7)</a>。</p>
<span class="math display" id="eq:thetaEL2">\[\begin{equation}
\ddot{\theta}(t)=-\frac{\ddot{x}(t)cos\theta(t)+gsin\theta(t)}{r}
\tag{1.7}
\end{equation}\]</span>
<p>通过求解该方程,我们可以得到我们的优化目标。</p>
</div>
<div id="section-1.3" class="section level2">
<h2><span class="header-section-number">1.3</span> 优化理论</h2>
<p>优化理论为二阶BAS算法。李晓晓同学给出的参数是,<span class="math inline">\(w_0 = 0.7\)</span>, <span class="math inline">\(w_1 = 0.2\)</span>。当然,文档中对于不同的目标函数可能有不同的调参结果,大家可以自行调试。</p>
</div>
<div id="section-1.4" class="section level2">
<h2><span class="header-section-number">1.4</span> 优化结果</h2>
<table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;">
<caption>
<span id="tab:example2parms">表 1.1: </span>实验参数取值
</caption>
<thead>
<tr>
<th style="text-align:left;">
Parameter
</th>
<th style="text-align:left;">
Description
</th>
<th style="text-align:left;">
Values
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<span class="math inline">\(c\)</span>
</td>
<td style="text-align:left;">
Constant
</td>
<td style="text-align:left;">
5
</td>
</tr>
<tr>
<td style="text-align:left;">
<span class="math inline">\(\lambda\)</span>
</td>
<td style="text-align:left;">
Step length ratio
</td>
<td style="text-align:left;">
0.95
</td>
</tr>
<tr>
<td style="text-align:left;">
<span class="math inline">\(\gamma\)</span>
</td>
<td style="text-align:left;">
Penalty coefficient
</td>
<td style="text-align:left;">
<span class="math inline">\(10^{50}\)</span>
</td>
</tr>
<tr>
<td style="text-align:left;">
<span class="math inline">\(n\)</span>
</td>
<td style="text-align:left;">
Number of iterations
</td>
<td style="text-align:left;">
1000
</td>
</tr>
<tr>
<td style="text-align:left;">
<span class="math inline">\(r\)</span>
</td>
<td style="text-align:left;">
Height of crane
</td>
<td style="text-align:left;">
20(m)
</td>
</tr>
<tr>
<td style="text-align:left;">
<span class="math inline">\(h\)</span>
</td>
<td style="text-align:left;">
Load displacement
</td>
<td style="text-align:left;">
40(m)
</td>
</tr>
</tbody>
</table>
<table class="table table-striped" style="width: auto !important; margin-left: auto; margin-right: auto;">
<caption>
<span id="tab:example2result">表 1.2: </span>优化结果对比
</caption>
<thead>
<tr>
<th style="text-align:left;">
Variables
</th>
<th style="text-align:right;">
fmincon
</th>
<th style="text-align:right;">
BAS
</th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align:left;">
<span class="math inline">\(tp_1\)</span>
</td>
<td style="text-align:right;">
8.9624000
</td>
<td style="text-align:right;">
6.9082000
</td>
</tr>
<tr>
<td style="text-align:left;">
<span class="math inline">\(tp_2\)</span>
</td>
<td style="text-align:right;">
8.9803000
</td>
<td style="text-align:right;">
6.9741000
</td>
</tr>
<tr>
<td style="text-align:left;">
<span class="math inline">\(tf\)</span>
</td>
<td style="text-align:right;">
19.8346000
</td>
<td style="text-align:right;">
15.8866000
</td>
</tr>
<tr>
<td style="text-align:left;">
<span class="math inline">\(f\)</span>
</td>
<td style="text-align:right;">
0.0029586
</td>
<td style="text-align:right;">
0.0001415
</td>
</tr>
</tbody>
</table>
<p>从表<a href="#tab:example2result">1.2</a>中可以看到,BAS能够让起重机小车在7秒内加速到最大速度,在16秒内就能到达终点并消除摆角。动图<a href="#fig:example2fminconbob">1.3</a>至<a href="#fig:example2bastrace">1.6</a>分别为采用<code>fmincon</code>和<code>BAS</code>做优化的结果,可以让我们有更为直观的认识。</p>
<div class="figure" style="text-align: center"><span id="fig:example2fminconbob"></span>
<img src="img/fminconbob.gif" alt="fmincon摆锤" />
<p class="caption">
图 1.3: fmincon摆锤
</p>
</div>
<div class="figure" style="text-align: center"><span id="fig:example2basbob"></span>
<img src="img/BASbob.gif" alt="BAS摆锤" />
<p class="caption">
图 1.4: BAS摆锤
</p>
</div>
<div class="figure" style="text-align: center"><span id="fig:example2fmincontrace"></span>
<img src="img/fmincontrace.gif" alt="fmincon轨迹" />
<p class="caption">
图 1.5: fmincon轨迹
</p>
</div>
<div class="figure" style="text-align: center"><span id="fig:example2bastrace"></span>
<img src="img/BAStrace.gif" alt="BAS轨迹" />
<p class="caption">
图 1.6: BAS轨迹
</p>
</div>
<div class="figure" style="text-align: center"><span id="fig:ex2accel"></span>
<img src="img/ex2_1.png" alt="起重小车加速度曲线" width="70%" />
<p class="caption">
图 1.7: 起重小车加速度曲线
</p>
</div>
<div class="figure" style="text-align: center"><span id="fig:ex2velocity"></span>
<img src="img/ex2_2.png" alt="起重小车速度曲线" width="70%" />
<p class="caption">
图 1.8: 起重小车速度曲线
</p>
</div>
<div class="figure" style="text-align: center"><span id="fig:ex2position"></span>
<img src="img/ex2_3.png" alt="起重小车位置曲线" width="70%" />
<p class="caption">
图 1.9: 起重小车位置曲线
</p>
</div>
</div>
</div>
</section>
</div>
</div>
</div>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/lunr.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": true,
"facebook": false,
"twitter": false,
"google": false,
"linkedin": false,
"weibo": false,
"instapper": false,
"vk": false,
"all": false
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": null,
"text": null
},
"download": null,
"toc": {
"collapse": "none"
},
"search": false
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "";
if (src === "" || src === "true") src = "https://cdn.bootcss.com/mathjax/2.7.1/MathJax.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:" && /^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>