Skip to content

juyeon999/Deep_Learning_For_Visual_Recognition

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

29 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Deep_Learning_For_Visual_Recognition (Pytorch)

Deep Learning For Visual Recognition (STA9131)

1. KNN

  • Implement KNN and use cross-validation to find optimal K

2. Linear_classifier

2-1. SVM loss

2-2. Softmax loss

3. Fully connected neural network

3-1. Two layer net

3-2. Fully connected layer

4. Convolutional networks

Make modules such as Convolutional layer forward, backward, batchnormalization and make deep convolutional networks.

4.1 Deep convolutional networks

  • Forward, backward for Convolutional layer, ReLU layer, Pooling layer, BN

4.1 Initialization

  • Kaiming initialization

4.1 BN (Batchnormalization)

  • BN
  • spatial BN

5. VAE

  • pytorch autograd and nn

6. GAN

7. Motion captioning with RNNs and LSTMs

7-1. RNNs

7-2. LSTM

About

Deep Learning For Visual Recognition(STA9131)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published