-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_cifar10_quick.py
143 lines (119 loc) · 5.42 KB
/
train_cifar10_quick.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import numpy as np
import theano as tn
import sdeepy.utils.pylab as pl
from sdeepy.core.network import Sequential
from sdeepy.data_provider import DataProviderFromMemory
from sdeepy.edge.convolution import Convolution, MaxPooling, AveragePooling
from sdeepy.edge.activation import Relu, Tanh
from sdeepy.edge.affine import Affine
from sdeepy.edge.loss_function import CategoricalCrossentropy, ZeroOne
from sdeepy.edge.unclassified import Softmax
from sdeepy.monitor import MonitorConvolution, Monitor
from dataset_util import load_cifar10_validation_set
from sdeepy.support import solver
from sdeepy.optimize import GradientDescent
from sdeepy.core.save import save_net
from sdeepy.core.load import load_net
from sdeepy.optimize.penalty import L2
from morph_test.utils_local import *
net_file_name = os.path.dirname(__file__) + '/cifar10_pena.sdn'#.format(os.path.basename(__file__).replace('.py', ''))
save_path_std = os.path.dirname(__file__) + '/test'
PARAM = dict()
max_epoch = 90
batch_size = 500
hyp_param1 = 0.001
# Create data provider
trainX, trainY, num_train_samples, validX, validY, num_test_samples = load_cifar10_validation_set(rasterized=False)
trainDP = DataProviderFromMemory([trainX, trainY], batch_size, shuffle=True)
validDP = DataProviderFromMemory([validX, validY], batch_size)
print "change..."
#Build inital net
##################################
if os.path.isfile(net_file_name):
print("Load inital net ...")
net = load_net(net_file_name)
C1 = net.get_edge_linear_order()[0]
P1 = net.get_edge_linear_order()[1]
C2 = net.get_edge_linear_order()[3]
P2 = net.get_edge_linear_order()[4]
C3 = net.get_edge_linear_order()[6]
P3 = net.get_edge_linear_order()[7]
A1 = net.get_edge_linear_order()[9]
A2 = net.get_edge_linear_order()[11]
else:
# Network configuration
rng = np.random.RandomState()
edges = [
Convolution(
inshape=(3, 32, 32), outmaps=32, kernel_shape=(5, 5,),
with_bias=True, init_method='bengio2010_tanh',
batch_size=batch_size, rng=rng, border_mode='same', strides=(1,)*2),
MaxPooling(
inshape=(32, 32, 32), pool_shape=(3, 3), strides=(2,)*2),
Relu(),
Convolution(
inshape=(32, 15, 15), outmaps=32, kernel_shape=(5, 5,),
with_bias=True, init_method='bengio2010_tanh',
batch_size=batch_size, rng=rng, border_mode='same', strides=(1,)*2),
AveragePooling(
inshape=(32, 15, 15), pool_shape=(3, 3), strides=(2,)*2),
Relu(),
Convolution(
inshape=(32, 7, 7), outmaps=64, kernel_shape=(5, 5,),
with_bias=True, init_method='bengio2010_tanh',
batch_size=batch_size, rng=rng, border_mode='same', strides=(1,) * 2),
AveragePooling(
inshape=(64, 7, 7), pool_shape=(3, 3), strides=(2,) * 2),
Relu(),
Affine(inshape=(64, 3, 3), outshape=(64,),
with_bias=True, init_method='bengio2010_tanh', rng=rng,),
Relu(),
Affine(inshape=(64,), outshape=(10,),
with_bias=True, init_method='bengio2010_tanh', rng=rng),
Softmax()
]
# Create convolutional neural net
net = Sequential(edges, name='cnn')
# Optimization for training
opt = GradientDescent(net, losses=CategoricalCrossentropy(),
data_provider=trainDP,
param_penalties={edges[0].s_params['w']: L2(hyp_param1),
edges[0].s_params['b']: L2(hyp_param1),
edges[3].s_params['w']: L2(hyp_param1),
edges[3].s_params['b']: L2(hyp_param1),
edges[6].s_params['w']: L2(hyp_param1),
edges[6].s_params['b']: L2(hyp_param1),
edges[9].s_params['w']: L2(hyp_param1),
edges[9].s_params['b']: L2(hyp_param1),
edges[11].s_params['w']: L2(hyp_param1),
edges[11].s_params['b']: L2(hyp_param1),
},
updater=GradientDescent.Updater(
method='default', base_lrate=0.1)
)
print('start training!')
mon = [Monitor(net,
ZeroOne(),
trainDP,
validDP,
monitor_condition=lambda epoch: True,
name='Error',
save_path=save_path_std),
Monitor(net,
CategoricalCrossentropy(),
trainDP,
validDP,
monitor_condition=lambda epoch: True,
name='Cost',
save_path=save_path_std)
]
solver.train(opt, monitors=mon, max_epoch=max_epoch)
save_net(net, net_file_name)
## evaluate net
orig_train_err, orig_train_cost = eval(net.forward([trainX])[0],trainY)
orig_test_err, orig_test_cost = eval(net.forward([validX])[0],validY)
######## Display results ##############
print " || TRAIN COST | TRAIN ERROR | TEST ERROR ||"
print "=========================================================="
print("Original || {:.5f} | {:.5f} | {:.5f} ||".format(orig_train_cost,orig_train_err*100,orig_test_err*100))