Skip to content

Latest commit

 

History

History
261 lines (219 loc) · 9.05 KB

README.md

File metadata and controls

261 lines (219 loc) · 9.05 KB

gmid

graphical model inference algorithms for influence diagrams.

  • related papers

    • Junkyu Lee, Radu Marinescu, Alexander Ihler, and Rina Dechter. "A Weighted Mini-Bucket Bound for Solving Influence Diagrams" in Proceedings of UAI 2019.
    • Junkyu Lee, Alexander Ihler, and Rina Dechter. "Join Graph Decomposition Bounds for Influence Diagrams" in Proceedings of UAI 2018.
  • algorithms

    • variable elimination with valuation algebra
    • mini-bucket elimination with valuation algebra
    • join graph decomposition bounds for id
  • translations

    • influence diagram to marginal MAP
    • factored mdp/pomdp generator and translator to influence diagrams
  • information relaxation by identifying minimum sufficient information set

  • visualization of graphical models and related graphs

    • influence diagram, primal graph, join tree, join graph, etc

dependencies

  • python2 pyGM

    • put source under /gmid/lib/pyGM
  • networkx 1.11

    $python setup.py install --user
    $sudo python setpu.py install
    
  • SortedContainers

    $pip install sortedcontainers
    
  • graphviz and pygraphviz

    $sudo apt-get install graphviz libgraphviz-dev pkg-config
    $pip2 install pygraphviz
    
  • numpy

  • scipy 1.2.1

$ conda create -n gmid python=2.7
$ conda activate gmid
$ conda install -c conda-forge sortedcontainers
$ conda install scipy=1.2.1
$ conda install networkx=1.11

orgainzations

  • gmid
    • gmid
      • /logs: store log files
      • /problems: store influence diagram problem files
      • /scripts: scripts for running algorithms
    • lib
      • /pyGM: gmid uses classes related to factors and variables
    • data
      • /benchmark: set of problems used in uai 2018 paper
      • /executables: some linux executables for comparison
      • /log-process: draw plots from data
      • /uai2018-paper: data related to uai 2018 paper

file formats

  • ID-UAI format, variant of uai format for influence diagram
    • *.uai defines factors
    • *.id defines identity of chance/decision variables and probability/utility functions
    • *.pvo or *.vo defines partial/total elimination ordering dictated by sequential decisions and observations
  • MI-UAI format, variant of uai format for marginal map
    • *.uai defines factors
    • *.mi defines decision and summation variables
    • *.pvo or *.vo defines partial/total elimination ordering
  • ID-ERG format, variant of erg format for influence diagram
    • single file defines factors, identity, and total elimination ordering
  • LIMID format, another variant of uai format called limid for influence diagram
    • this also defines all elements for influence diagrams in 1 file
  • fileio.py
    • provides reader/writer to each format
    • provides conversion between them
    • problems_id stores influence diagram in the first format that separates factors, identity, and constriants
  • convention
    • problems_id: collection of uai, id, pvo
    • problems_mixed: collection of uai, mi, pvo --> MMAP with mixed order
    • problems_mmap: collection of uai, and map files --> standard UAI MMAP format
    • problems_relaxed: collection of uai, id, pvo but resulting from information relaxation by MSIS
    • problems_trans: stores converted files

algorithms

  • overall process

    1. read a graphical model problem and create list of factors and variables (valuations)
    2. create a graphical model object with factors and variables
    3. create a primal graph object from graphical model object
    4. find a constrained variable elimination ordering with a primal graph object
    5. create a mini_bucket_tree with an i-bound parameter by mini_bucket_tree(graphical_model, ordering, ibound)
    6. solve problem by CTE(clutster tree elim algorithm) --> exact solver or mini-bucket elimination stops here
    7. create a join graph from mini_bucket_tree by join_graph(mini_bucket_tree.message_graph, mini_buckets, ordering)
    8. add functions, scopes, and various algorithm specific information to message graphs
    9. solve problem by GddIdHingeShiftProjected(JGDID algorithm)
  • graph_algorithms.py

    • visuzlize NxDiagram, PrimalGraph, InfluenceDiagram, Limid...
      • class NxDiagram()
        class PrimalGraph()
        class NxInfluenceDiagram()
        class NxFactoredMDP() // added to visualize multi decision variables per stage
    • algorithms for finding minimum separating information set in DAG and testing d-separation
      • def get_relaxed_influence_diagram()
    • algorithms for finding variable elimination ordering
      • def iterative_greedy_variable_order()
    • Mini Bucket Tree and Join graph decomposition to be used as region grphas
      • def mini_bucket_tree()
        def join_graph()
        def gdd_graph()
    • Message Graph class
      • class MessageGraph()
      • create a MessageGraph object with a region_graph and elimination order
      • region graph can be bucket tree, mini-bucket tree, join graph structured by mini bucket tree, or gdd graph
    • additional functions defining additional node/ edge attributes for region graphs and message graphs
  • graphical_models.py

    • class GraphicalModel()
    • graphcial model class is a container for variables, factors, elimination order, etc.
    • create a graphical model with a list of factors, a list of weights of variables and elimination order
  • message_passing.py

    • class MessagePassing()
    • MessagePassing class is abstract class for message passing algorithms
    • MessagePassing object holds a MessageGraph, list of weights, elimination order, and path to the log file.
    • MessagePassing algorithms implement
      • def schedule()
        def init_propagate()
        def propagate()
        def _propagate_one_pass()
        def bounds()
  • cte.py implements cluster tree elimination (variable elimination, mini-bucket elimination)

    • class CTE(MessagePassing):
    • use common interface defined by MessagePassing
  • gdd_hinge_shift_prj.py implements JGDID algorithm

    • class GddIdHingeShiftProjected(MessagePassing):
    • use common interface defined by MessagePassing
  • gddmixed.py implements GDD algorithm for MMAP

    • class GddMixed(MessagePassing):
    • use common interface defined by MessagePassing
  • valuation.py

    • class Valuation():
    • Valuation class is a wrapper class of factor class in pyGM that supports valuation algebra
  • constats.py

    • defines various global variables
    • PRJ_PATH = "/home/junkyul/gmid" should be replaced by proper path (same for all running examples)
  • run_weightedmbe.py

    • class WeightedMBE(MessagePassing):
      
    • implementing mbe with valuation algebra + optimizing dynamic gdd bound per layer of mini-buckets

Script examples

  • running algorithms

    • run_vo.py

      • given ID-UAI or MI-UAI (uai, id/mi, pvo), find vo (total elim order)
      • generating vo file from pvo file can be done before running each algorithm
    • run_cte.py

      • run CTE algorithm for influence diagram
      • input files are stored in problems_id
    • run_gddhingeshifprj.py/ run_gddhingeshifprj_relaxed.py

      • run JGDID algorithm for inlufence diagram
      • input files are stored in problems_id
    • run_gddhingeshifprj_relaxed.py

      • run JGDID algorithm for inlufence diagram
      • input files are stored in problems_relaxed
    • run_gddmixed.py

      • run gdd algorithm for mixed inference (MMAP with interleaved max and sum)
      • input files are stored in problems_mixed
    • run_weightedmbe.py

      • run weighted mini bucket elimination for influence diagram
      • input files are stored in problems_id
  • generating problems

    • gen_id_from_bn.py

      • geneate random influence diagram from Bayes net
      • Bayes nets and random influence diagrams are stored in beta
    • gen_mdp.py

      • generate random factored mdp
      • generated influence diagrams (uai, id, pvo) and gpickle files are stored in beta
    • gen_pomdp.py

      • generate random factored pomdp
      • generated influence diagrams (uai, id, pvo) and gpickle files are stored in beta
    • gen_sysadmin.py

      • generated sysadmin factored mdp problems
  • converting formats

    • trans_erg_to_uai.py

      • convert ERG-UAI (erg) to ID-UAI (uai, mi, pvo)
    • trans_id_to_mixed.py

      • convert ID-UAI (uai, id, pvo) to MI-MMAP (uai, mi, pvo) format
    • trans_limid_to_mmap.py

      • convert LIMID (*.limid) to standard uai MMAP (uai, map) format
    • trans_mmap_to_mixed.py

      • convert uai MMAP (uai, map) standard format to MI-MMAP (uai, mi, pvo) mixed format
    • trans_msis.py

      • relax input influence diagram (input, output in ID-UAI format)
      • generates relaxed partial variable ordering *.relaxed.pvo and *.png file showing relaxed influence diagram
    • trans_uai_to_limd.py

      • converts UAI format (.uai, .pvo, .id) to limid format
  • draw graphs

    • draw_sysadmin.py

TODO

  • upgrade to to python3
  • upgrade code to recent networkx libs
  • use logger