-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcssl_utils.py
39 lines (29 loc) · 1.15 KB
/
cssl_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import numpy as np
def calculate_ece(predicted, labels, num_bins=15):
"""
Calculates the expected calibration error (ECE) for the provided number of bins.
:param predicted: Probabilistic predictions
:param labels: Hard labels (classes)
:param num_bins: Number of bins for the ECE discretization
:return: Returns the numeric ECE score
"""
predicted_cls = predicted.argmax(1)
interval_step = 1. / num_bins
bin_sizes = np.zeros(num_bins)
confidences = np.max(predicted, axis=-1)
bin_indices = np.minimum(confidences // interval_step, num_bins - 1).astype(np.int32)
bin_accs = np.zeros(num_bins)
bin_confs = np.zeros(num_bins)
for i in range(predicted.shape[0]):
bin_idx = bin_indices[i]
bin_sizes[bin_idx] += 1
if predicted_cls[i] == labels[i]:
bin_accs[bin_idx] += 1
bin_confs[bin_idx] += confidences[i]
for i in range(num_bins):
bin_accs[i] /= max(bin_sizes[i], 1)
bin_confs[i] /= max(bin_sizes[i], 1)
ece = 0.
for i in range(num_bins):
ece += (bin_sizes[i] / predicted.shape[0]) * np.abs(bin_accs[i] - bin_confs[i])
return ece