forked from baldrech/MizerEvo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTBM1.r
650 lines (546 loc) · 30.3 KB
/
TBM1.r
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
#give a mizer param object to that thing
set_TBM <- function(no_sp = 10, # number of species #param described in Andersen & Pedersen 2010
min_w_inf = 10, # minimum weight of sp
max_w_inf = 1e5, # maximum weight of sp
no_w = 100, # number of size bins community spectrum
min_w = 0.001, #min size bin of community spectrum/The smallest size of the species community size spectrum
max_w = max_w_inf * 1.1, #max size bin of both spectrum
min_w_pp = 1e-10, #min size bin of background size spectrum
no_w_pp = round(no_w)*0.3, # number of size bins background spectrum
w_pp_cutoff = 0.5, # cut of size of the background spectrum
k0 = 50, # recruitment adjustment parameter
n = 0.75, # exponent of maximum intake (scaling of intake)
p = 0.75, # exponent of standard metabolism
q = 0.8, # exponent of search volume
eta = 0.25, # size at maturation relative to Mg (mass in grams ?)
r_pp = 4, # growth rate of resource spectrum (primary production)
kappa = 0.05, # ressource spectrum carrying capacity
lambda = 2+q-n, # exponent of the background spectrum.
alpha = 0.6, # assimilation efficiency
ks = 2, # factor for standard metabolism
z0pre = 0.84, # background mortality factor
h = 85, # factor of maximum intake
beta = 100, # preferred predator-prey weight ratio
sigma = 1.3, # width of selection function
f0 = 0.6, # average feeding level of the community/feeding level of small individuals feeding on background
knife_edge_size = 1000, #knife edge position
gear_names = "knife_edge_gear",
r_mult = 1e0, #rmax multiplier to try things
cannibalism = 1, # to tweak cannibalism in the interaction matrix
erepro = 0.1, # reproduction efficiency
rm = NULL, # rmax if want to set up constant
s_max = 1000, # time max of the simulation
normalFeeding = T, # if wants to normalise the feeding
...){
# Calculate gamma using equation 2.1 in Andersen & Pedersen 2010
alpha_e <- sqrt(2*pi) * sigma * beta^(lambda-2) * exp((lambda-2)^2 * sigma^2 / 2) # see A&P 2009
gamma <- h * f0 / (alpha_e * kappa * (1-f0)) # see A&P 2009 / volumetric search rate
w_inf <- 10^seq(from=log10(min_w_inf), to = log10(max_w_inf), length=no_sp) # asymptotic mass of the species
w_mat <- w_inf * eta # maturation mass / mass at first maturity
#check if things are ok
# cat(sprintf("beta = %g \n",beta))
# cat(sprintf("sigma = %g \n",sigma))
# cat(sprintf("lambda = %g \n",lambda))
# cat(sprintf("alpha e = %g \n",alpha_e))
# cat(sprintf("h = %g \n",h))
# cat(sprintf("f0 = %g \n",f0))
# cat(sprintf("kappa = %g \n",kappa))
# cat(sprintf("gamma = %g \n", gamma))
# Check if gears ok
if (length(knife_edge_size) > no_sp){
stop("There cannot be more gears than species in the model")
}
if ((length(knife_edge_size) > 1) & (length(knife_edge_size) != no_sp)){
warning("Number of gears is less than number of species so gear information is being recycled. Is this what you want?")
}
if ((length(gear_names) != 1) & (length(gear_names) != no_sp)){
stop("Length of gear_names argument must equal the number of species.")
}
# Make the species parameters data.frame
trait_params_df <- data.frame(
species = 1:no_sp,
w_inf = w_inf,
w_mat = w_mat,
h = h, # max food intake
gamma = gamma, # vol. search rate,
ks = ks,# standard metabolism coefficient,
beta = beta,
sigma = sigma,
eta = eta,
z0 = z0pre * w_inf^(n-1), # background mortality
alpha = alpha,
sel_func = "knife_edge",
knife_edge_size = knife_edge_size,
gear = gear_names,
erepro = erepro, # not used but included out of necessity
extinct = FALSE,
cannibalism = cannibalism,
pop = 0, # to get the time of apparition
run = 1,
ecotype = 1:no_sp,
error = 0 # to trace errors
)
# Make the MizerParams
# MizerParams is in MizerParams-class. Use Source or something because it's freaking long.
trait_params <- MizerParams(trait_params_df, min_w = min_w, max_w=max_w, no_w = no_w, min_w_pp = min_w_pp, w_pp_cutoff = w_pp_cutoff, n = n, p=p, q=q, r_pp=r_pp, kappa=kappa, lambda = lambda, normalFeeding = normalFeeding)
# Sort out maximum recruitment - see A&P 2009
# Get max flux at recruitment boundary, R_max
# R -> | -> g0 N0
# R is egg flux, in numbers per time
# Actual flux at recruitment boundary = RDD = NDD * g0 (where g0 is growth rate)
# So in our BH SRR we need R_max comparable to RDI (to get RDD)
# R_max = N0_max * g0 (g0 is the average growth rate of smallest size, i.e. at f0 = 0.5)
# N0 given by Appendix A of A&P 2010 - see Ken's email 12/08/13
# Taken from Ken's code 12/08/13 - equation in paper is wrong!
if (is.null(rm))
{
alpha_p <- f0 * h * beta^(2 * n - q - 1) * exp((2 * n * (q - 1) - q^2 + 1) * sigma^2 / 2)
alpha_rec <- alpha_p / (alpha * h * f0 - ks)
# Calculating dw using Ken's code - see Ken's email 12/08/13
tmpA <- w_inf[1]
tmpB <- (log10(w_inf[length(w_inf)]) - log10(w_inf[1])) / (no_sp - 1) # Difference between logged w_infs, fine
if (length(no_sp) == 1 ) dw_winf <- tmpA *10
else dw_winf <- tmpB * tmpA *10^(tmpB*((1:no_sp)-1)) # ?
N0_max <- k0 * w_inf^(n*2-q-3+alpha_rec) * dw_winf # Why * dw_winf, not / ? Ken confirms * in email
# No need to include (1 - psi) in growth equation because allocation to reproduction at this size = 0, so 1 - psi = 1
g0 <- (alpha * f0 * h * trait_params@w[1]^n - ks * trait_params@w[1]^p)
r_max <- N0_max * g0 * r_mult
trait_params@species_params$r_max <- r_max
}
else trait_params@species_params$r_max <- rm
# addition of the maximum time of the simulation to have it somewhere in the mizer object
trait_params@species_params$timeMax <- s_max
return(trait_params)
}
# what's in it?
#param <- set_TBM(no_sp = 3)
#slotNames(param)
# w: start value of each size bins of the community spectrum
# dw: lenght of the size bin (w1+dw=w2)
#dw_full: no idea, might a limit size for the bins
#psi: allocation to reproduction #psi to std_metabolism are fucntion applied on w, therefore one value for each sp of each size bin
#intake_max:
#search_vol:
#activity:
#std_metab:
#pred_kernel: huge stuff
#rr_pp: background size spectrum growth rate (weight specific)
#cc_pp: background size spectrum ressource carrying capacity
#species_params: summary of the sp params. you can get the type of gear use to catch them (only one for now)
#interaction: does the sp interact or not (I guess)
#srr: Beverton Holt esque relationship (function) didn't know what that do
#selectivity: does the gear catch or not depending on the sp/w
#catchability: eeeh I dunno
#summary(param)
#use param@something to explore slots
# now the projection in time
#there are no fisheries for the moment, issue in the fMortGear
#for testing purpose
# effort = 0
# t_max = 100
# t_save = 1
# dt = 0.1
# initial_n=get_initial_n(param)
# initial_n_pp=param@cc_pp
project <- function(object, effort=0, t_max = 100, t_save=0.1, dt=0.1, initial_n=get_initial_n(object), initial_n_pp=object@cc_pp,
mu = 2, i_stop = NULL, resident = NULL, data = FALSE, extinct = TRUE, RMAX = TRUE, OptMutant = "M1", M3List = NULL ,
checkpoint, print_it, predMort = NULL, ...){
umbrella = FALSE # parameter that says if there are still things alive
#first, let's convert the effort to the good dim/class
if(class(effort) == "numeric"){
if (!all((t_max %% dt) == 0)) # %% is the remainder
stop("t_max must be divisible by dt with no remainder")
no_gears <- dim(object@catchability)[1] #number of gears
if ((length(effort)>1) & (length(effort) != no_gears))
stop("Effort vector must be the same length as the number of fishing gears\n")
# If more than 1 gear need to check that gear names match
gear_names <- dimnames(object@catchability)[[1]]
effort_gear_names <- names(effort)
if (length(effort) == 1 & is.null(effort_gear_names)){
effort_gear_names <- gear_names
}
if(!all(gear_names %in% effort_gear_names)){
gear_names_error_message <- paste("Gear names in the MizerParams object (", paste(gear_names, collapse=", "), ") do not match those in the effort vector.", sep="")
stop(gear_names_error_message)
}
# Set up the effort array transposed so we can use the recycling rules
#time_dimnames <- signif(seq(from=1,to=t_max,by=dt),3)
time_dimnames <- signif(seq(from=1*dt,to=(t_max/dt-8)*dt,by=dt),3) #if I keep the previous one, I' missing the first 8 time step, which should be the inverse situation
# that's super weird
effort_array <- t(array(effort, dim=c(no_gears,length(time_dimnames)), dimnames=list(gear=effort_gear_names,time=time_dimnames)))
effort <- effort_array
}
# now we have the effort check an in the array format
validObject(object)
# Check that number and names of gears in effort array is same as in MizerParams object
no_gears <- dim(object@catchability)[1]
if(dim(effort)[2] != no_gears){
no_gears_error_message <- paste("The number of gears in the effort array (length of the second dimension = ", dim(effort)[2], ") does not equal the number of gears in the MizerParams object (", no_gears, ").", sep="")
stop(no_gears_error_message)
}
gear_names <- dimnames(object@catchability)[[1]]
if(!all(gear_names %in% dimnames(effort)[[2]])){
gear_names_error_message <- paste("Gear names in the MizerParams object (", paste(gear_names, collapse=", "), ") do not match those in the effort array.", sep="")
stop(gear_names_error_message)
}
# Sort effort array to match order in MizerParams
effort <- effort[,gear_names, drop=FALSE]
# Blow up time dimension of effort array
# i.e. effort might have been passed in using time steps of 1, but actual dt = 0.1, so need to blow up
if (is.null(dimnames(effort)[[1]])){
stop("The time dimname of the effort argument must be numeric.")
}
if (any(is.na(as.numeric(dimnames(effort)[[1]])))){
stop("The time dimname of the effort argument must be numeric.")
}
time_effort <- as.numeric(dimnames(effort)[[1]])
##_max <- time_effort[length(time_effort)] # commenting that because bugs
# Blow up effort so that rows are dt spaced
time_effort_dt <- seq(from = time_effort[1], to = t_max, by = dt)
effort_dt <- t(array(NA, dim = c(length(time_effort_dt), dim(effort)[2]), dimnames=list(time = time_effort_dt, dimnames(effort)[[2]])))
for (i in 1:length(time_effort)){
effort_dt[,time_effort_dt >= time_effort[i]] <- effort[i,]
}
effort_dt <- t(effort_dt)
#now the effort is done, let's do something interesting
# Make the MizerSim object with the right size
# We only save every t_save steps, default is 1
if (!all((t_save %% dt) == 0))
stop("t_save must be divisible by dt with no remainder")
t_dimnames_index <- as.integer(seq(from = 1+ ((t_save-1) / dt), to = length(time_effort_dt), by = t_save/dt)) #create a vector of all the times step where there is a save (every 10 dt)
t_dimnames_index <- t_dimnames_index[t_dimnames_index>0] #get rid of non positive if so
t_dimnames <- time_effort_dt[t_dimnames_index]
sim <- MizerSim(object, t_dimnames = t_dimnames) #build the object, pretty much empty at this stade but has the right dimensions to be filled
# I dont know why but the mizer object is created 1 time step longer (add time step 0) and its a fucking pain in the ass
# Fill up the effort array
sim@effort[] <- effort_dt[t_dimnames_index,]
# # Set initial population
# sim@n[1, , ] <- initial_n
# sim@n_pp[1, ] <- initial_n_pp
# Handy things
no_sp <- nrow(sim@params@species_params)
no_w <- length(sim@params@w)
no_w_pp <- length(sim@params@w_full)
idx <- 2:no_w
# If no w_min_idx column in species_params, add one
if (!("w_min_idx" %in% names(sim@params@species_params)))
sim@params@species_params$w_min_idx <- 1
# Hacky shortcut to access the correct element of a 2D array using 1D notation
# this thing get you the first value of each species in whatever function you want
w_min_idx_array_ref <- (sim@params@species_params$w_min_idx-1) * no_sp + (1:no_sp)
# sex ratio - DO SOMETHING LATER WITH THIS
sex_ratio <- 0.5
# Matrices for solver
# Dynamics of background spectrum uses a semi-chemostat model (de Roos - ask Ken)
A <- matrix(0,nrow=no_sp,ncol=no_w)
B <- matrix(0,nrow=no_sp,ncol=no_w)
S <- matrix(0,nrow=no_sp,ncol=no_w)
if(dim(sim@n)[2] == 1) dimnames(sim@n)$sp = 1
else dimnames(sim@n)$sp = rownames(initial_n) # the object created by mizer doesnt keep in memomry my mutant names, so Im putting them here
# Set initial population
if (missing(i_stop) == TRUE)
{
sim@n[1, , ] <- initial_n
sim@n_pp[1, ] <- initial_n_pp
# initialise n and nPP (pp is background)
# We want the first time step only but cannot use drop as there may only be a single species
n <- array(sim@n[1,,],dim=dim(sim@n)[2:3]) #take the first line of sim (for each weight) and put it in the matrix of right dimension (= sim@n at t=1)
dimnames(n) <- dimnames(sim@n)[2:3] # now it has the weights as names
n_pp <- sim@n_pp[1,] # no need for an array, there is only one line
t_steps <- dim(effort_dt)[1] #time stpes = max number of dt (not only the 100 saved)
init = 1 # for the for loop
}
else # this loop allow to continue the simulation where it stopped previously (on a time step point of view), if it has
{
# i_stop is not the real time step that the user enter, i_stop = i_step/dt
# I'm going to start at the next i_step then
t_init = i_stop# round up /
# Set initial population
dimnames(sim@n)[[2]] <- rownames(initial_n) # updating the names accordingly (could do that during the object creation)
sim@n[t_init+1, , ] <- initial_n #+1 is there because the array start at 0 and not 1 # name bug here
sim@n_pp[t_init+1, ] <- initial_n_pp
# initialise n and nPP (pp is background)
# We want the first time step only but cannot use drop as there may only be a single species
n <- array(sim@n[t_init+1,,],dim=dim(sim@n)[2:3]) #take the first line of sim (for each weight) and put it in the matrix of right dimension (= sim@n at t=1)
dimnames(n) <- dimnames(sim@n)[2:3] # now it has the weights as names
n_pp <- sim@n_pp[t_init+1,] # no need for an array, there is only one line
t_steps <- dim(effort_dt)[1] #time steps = max number of dt (not only the 100 saved)
init = i_stop+1 # I need to start right after the last save (t_init), but pass in small steps
}
# the sim is fully initialised now, time to move forwards
#time projection
if (data == TRUE){
# arrays that gets the details of energy allocation (only works without mutants) c(as.character(seq(1:no_sp)))
energy <- array(dim = c(t_steps,no_sp,no_w,4), dimnames = list(c(as.character(seq(1:t_steps))),dimnames(sim@n)$sp,dimnames(sim@n)$w,c("reproAndGrowth", "spawning", "growth", "feeding")))
names(dimnames(energy)) <- list("Time","Species","Size","Energy")
rd <- array(dim = c(t_steps,no_sp,2), dimnames = list(c(as.character(seq(1:t_steps))),dimnames(sim@n)$sp, c("RDI", "RDD")))
names(dimnames(rd)) <- list("Time","Species","Energy")
eggs <- array(dim = c(t_steps,no_sp), dimnames = list(c(as.character(seq(1:t_steps))),dimnames(sim@n)$sp))
names(dimnames(eggs)) <- list("Time","Species")
food <-array(dim = c(t_steps,no_sp,no_w,no_w_pp), dimnames = list(c(as.character(seq(1:t_steps))),dimnames(sim@n)$sp,dimnames(sim@n)$w,dimnames(sim@n_pp)$w))
names(dimnames(food)) <- list("Time","Species","PredSize","PreySize")
death <-array(dim = c(t_steps,no_sp,no_w), dimnames = list(c(as.character(seq(1:t_steps))),dimnames(sim@n)$sp,dimnames(sim@n)$w ))
names(dimnames(death)) <- list("Time","PreySp","PreySize")
Tdeath <-array(dim = c(t_steps,no_sp,no_w), dimnames = list(c(as.character(seq(1:t_steps))),dimnames(sim@n)$sp,dimnames(sim@n)$w ))
names(dimnames(Tdeath)) <- list("Time","PreySp","PreySize")
Pdeath <- array(dim = c(t_steps,no_w_pp),dimnames = list(c(as.character(seq(1:t_steps))),dimnames(sim@n_pp)$w))
names(dimnames(Pdeath)) <- list("Time","PreySize")
trouveF <- array(dim = c(t_steps,no_sp,no_w), dimnames = list(c(as.character(seq(1:t_steps))),dimnames(sim@n)$sp,dimnames(sim@n)$w ))
names(dimnames(trouveF)) <- list("Time","PredSp","PredSize")
trouveB <- array(dim = c(t_steps,no_sp,no_w), dimnames = list(c(as.character(seq(1:t_steps))),dimnames(sim@n)$sp,dimnames(sim@n)$w ))
names(dimnames(trouveB)) <- list("Time","PredSp","PredSize")
}
for (i_time in init:t_steps)
{
# if (i_time %% check_point == 0) return() # stop the simulation every 500 loop to reduce the size of the arrays and clean the extinct species
# Do it piece by piece to save repeatedly calling methods, functions found in porject_methods.r
phi_prey <- getPhiPrey(sim@params, n=n, n_pp=n_pp,opt = T)
feeding_level <- getFeedingLevel(sim@params, n=n, n_pp=n_pp, phi_prey=phi_prey)
pred_rate <- getPredRate(sim@params, n=n, n_pp=n_pp, feeding_level=feeding_level)
if (!is.null(predMort)) m2 = predMort else m2 <- getM2(sim@params, n=n, n_pp=n_pp, pred_rate=pred_rate)
# print(class(m2))
# print(dim(m2))
# print(dimnames(m2))
# print(m2)
m2_background <- getM2Background(sim@params, n=n, n_pp=n_pp, pred_rate=pred_rate)
z <- getZ(sim@params, n=n, n_pp=n_pp, effort=effort_dt[i_time,], m2=m2) #total mortality
e <- getEReproAndGrowth(sim@params, n=n, n_pp=n_pp, feeding_level=feeding_level)
e_spawning <- getESpawning(sim@params, n=n, n_pp=n_pp, e=e)
e_growth <- getEGrowth(sim@params, n=n, n_pp=n_pp, e_spawning=e_spawning, e=e)
rdi <- getRDI(sim@params, n=n, n_pp=n_pp, e_spawning=e_spawning, sex_ratio=sex_ratio)
rdd <- getRDD(sim@params, n=n, n_pp=n_pp, rdi=rdi, sex_ratio=sex_ratio)
# Iterate species one time step forward:
A[,idx] <- sweep(-e_growth[,idx-1,drop=FALSE]*dt, 2, sim@params@dw[idx], "/")
# idx start at 2, the -1 makes it include the first column # the "-" makes all the value negative and *dt reduce accordingly to one time step
# the operation takes the first column of e_growth and divide it by the first column of sim@params@dw (which is in reality the secon one because of the idx-1)
#the result is a negative value placed in the second column of A (dw is small so dividing by it makes a big number)
B[,idx] <- 1 + sweep(e_growth[,idx,drop=FALSE]*dt,2,sim@params@dw[idx],"/") + z[,idx,drop=FALSE]*dt
# in this one, with start with the second column of e_growth, divided by the same of sim@params@dw
# why m2 pos? # I think it's the sum of everything that leaves w, hence the growth that goes in the next and predation
S[,idx] <- n[,idx,drop=FALSE]
# Boundary condition upstream end (recruitment), add values to the first column that stayed empty
B[w_min_idx_array_ref] <- 1+e_growth[w_min_idx_array_ref]*dt/sim@params@dw[sim@params@species_params$w_min_idx]+z[w_min_idx_array_ref]*dt
# Update first size group of n
#actual value + density dependent reproduction by dt / dw (bins size) / first column of B
if (RMAX == FALSE) n[w_min_idx_array_ref] <- (n[w_min_idx_array_ref] + rdi*dt/sim@params@dw[sim@params@species_params$w_min_idx]) / B[w_min_idx_array_ref] #changed rdd to rdi
else n[w_min_idx_array_ref] <- (n[w_min_idx_array_ref] + rdd*dt/sim@params@dw[sim@params@species_params$w_min_idx]) / B[w_min_idx_array_ref]
# print("rmax")
# print(sim@params@species_params$r_max)
#
# print("rdi")
# print(rdi)
# print("rdd")
# print(rdd)
#
# print("dt machin")
# print(dt/sim@params@dw[sim@params@species_params$w_min_idx])
#
# print("B")
# print(B[w_min_idx_array_ref])
# Invert matrix
for (i in 1:no_sp)
for (j in (sim@params@species_params$w_min_idx[i]+1):no_w) # the 2 loops sweep all the matrix n, change the whole n array at one time step, start at 2
n[i,j] <- (S[i,j] - A[i,j]*n[i,j-1]) / B[i,j]
# extinction part
if (extinct == TRUE)
{
extinction = 1e-30
# remove all rows with non-finite values
n[!rowSums(!is.finite(n)), ]
# replace all non-finite values with 1e-30 (not 0 but lower than extinction threshold)
n[!is.finite(n)] <- 1e-30
for (i in 1:no_sp)
{
if (sum(n[i,]) < extinction &
0 < sum(n[i,]))
# if species abundance under extinction threshold but not already extinct, kill it
{
n[i,] = 0
# find the name of the species going extinct
toto = which(sim@params@species_params$ecotype == rownames(n)[i])
if (sim@params@species_params$extinct[toto] == FALSE)
# security for bugs
if (print_it) cat(
sprintf(
"Extinction of species %s at time %s\n",
sim@params@species_params$ecotype[toto],
i_time
)
)
else if (sim@params@species_params$extinct[toto] != FALSE)
{
if (print_it) cat(
sprintf(
"Species %s at time %s is a zombie\n",
sim@params@species_params$ecotype[toto],
i_time
)
) # to check if they come back from the dead
sim@params@species_params$erro[toto] = 1 # if this happen it will be noted by a 1 in the sp ID
}
sim@params@species_params$extinct[toto] <-
i_time + (checkpoint - 1) * t_max / dt # update the extinction status
#print(sim@params@species_params)
if (sim@params@species_params$extinct[toto] < sim@params@species_params$pop[toto])
sim@params@species_params$error[toto] = 2 # if this happen it will be noted by a 2 in the sp ID
}
}
if (dim(sim@params@species_params[sim@params@species_params$extinct != FALSE,])[1] == dim(sim@params@species_params)[1])
umbrella = TRUE # if this is true, evrything is dead
}
#why the -A ? why not directly construct A the right way?
#here, B = S -A*n(-1) +e_growth + m2, it's like the total of everything and we get the portion that stay in the bin ?
# Dynamics of background spectrum uses a semi-chemostat model (de Roos - ask Ken)
tmp <- (sim@params@rr_pp * sim@params@cc_pp / (sim@params@rr_pp + m2_background))
n_pp <- tmp - (tmp - n_pp) * exp(-(sim@params@rr_pp+m2_background)*dt)
# time to save!, is i_time in t_dimnames?
store <- t_dimnames_index %in% i_time # test if t is in i
if (any(store))
{
sim@n[which(store)+1,,] <- n # 'which' tells how many true are in store, indicate the time step where to store the n
sim@n_pp[which(store)+1,] <- n_pp
}
if (umbrella == TRUE) # in that case nothing is left and the simulation stop
{
if (print_it) cat(sprintf("Life has left your simulation, game over.\nSimulation stopped at time %s.\n", i_time))
if (data == TRUE) return(list(energy,rd,eggs,sim,food,death,Tdeath,Pdeath,trouveF,trouveB)) # when I want to run the sim but get something else from it (like any other data)
else return(list(sim,umbrella)) #I just want something size 2
}
# getting the energy allocation data
if (data == TRUE)
{
energy[i_time, ,, ] = cbind(e, e_spawning, e_growth,feeding_level)
rd[i_time,,] = cbind(rdi,rdd)
eggs[i_time,] = n[w_min_idx_array_ref]
food[i_time,,,] = pred_rate
death[i_time,,] = m2
Tdeath[i_time,,] = z
Pdeath[i_time,] = m2_background
trouveF[i_time,,] = phi[[1]]
trouveB[i_time,,] = phi[[2]]
}
# MUTANT TIME
mute = FALSE
multiple = FALSE
switch(OptMutant,
M1 = {
i = 1
while (i <= nrow(sim@params@species_params) &
mute == FALSE)
# leave the loop if all the species have been checked or a mutation happened
{
egg = rdi[i] # number of offsprings of species i
mutation = egg * mu # probability of mutant
if (mutation >= sample(1:10000, 1))
# the rate is a % of mutation with 3 decimals. mutation = 152 means 1.52% chance of getting a mutant
{
resident <-
rownames(sim@params@species_params)[i] # I select the resident having the mutant egg
if (sim@params@species_params$extinct[i] == FALSE)
# redondant I think as rdi of extinct species = 0 anyway
{
mute = TRUE # if want to check if the resident is still alive but can't do it before because of rdi[i]
#print(mutation)
}
}
i = i + 1
}
},
M2 = {
if (mu >= sample(1:1000, 1))
{
#print("selection of parent")
residentPool = sim@params@species_params[sim@params@species_params$extinct == FALSE,] # only keep the available residents (the one not extinct)
#print(residentPool)
# to block exponential evolution of species, I'm first picking a lineage randomly and then an ecotype in this lineage
lineagePool = unique(residentPool$species)
#print(lineagePool)
if (length(lineagePool) == 1) lineage = lineagePool
else lineage = sample(lineagePool, 1)
#print(lineage)
residentPool=residentPool[residentPool$species == lineage,]
#print(residentPool)
resident <- sample(1:nrow(residentPool), 1) # this is the rownumber of the selected resident
#print(resident)
resident <- residentPool$ecotype[resident]
#print(resident)
#rownames(residentPool)[resident] # this is his name now
#print("parent selected")
mute = TRUE
}
},
M3 = {
for (i in 1:length(M3List[[1]]))
{
if (M3List[[1]][i] == i_time)
{
# old version
# residentPool = sim@params@species_params[sim@params@species_params$extinct == FALSE,] # only keep the available residents (the one not extinct)
# resident <- sample(1:nrow(residentPool), 1) # this is the rownumber of the selected resident
# resident <- rownames(residentPool)[resident] # this is his name now
#new version
residentPool = sim@params@species_params[sim@params@species_params$extinct == FALSE,] # only keep the available residents (the one not extinct)
#print(residentPool)
# to block exponential evolution of species, I'm first picking a lineage randomly and then an ecotype in this lineage
lineagePool = unique(residentPool$species)
#print(lineagePool)
if (length(lineagePool) == 1) lineage = lineagePool
else lineage = sample(lineagePool, 1)
#print(lineage)
residentPool=residentPool[residentPool$species == lineage,]
#print(residentPool)
resident <- sample(1:nrow(residentPool), 1) # this is the rownumber of the selected resident
#print(resident)
resident <- residentPool$ecotype[resident]
mute = TRUE
}}
},
M4 = {
residentPool = sim@params@species_params[sim@params@species_params$extinct == FALSE,]
resident = NULL
for (i in 1:nrow(residentPool))
{
if (mu >= sample(1:1000, 1))
{
resident <- c(resident, rownames(residentPool)[i]) # this is his name now
mute = TRUE
}
if (length(resident) >1) multiple = TRUE
}
},
{})
if (mute == TRUE & i_time!=t_steps) { # mutation rate egg dependent # if Iget a mutant on last time step I get bugs because the sim restart at last +1 time step
# save the data
sim_stop = sim
# I need to get rid of the first or last line for no overlapping
# it will be the first (initial conditions of this sim), but only after the first mutation
# t_init +1 is the line number of the initialisation
if (missing(i_stop) == FALSE) sim_stop@n[t_init+1,,]<- NA # if it's not the first run, delete the initialisation (first line where the mutant is introduce, easier for pasting later)
i_stop = i_time # to conserve the time of the projection to restart later
stopList <- list(sim_stop, i_stop, resident,n,n_pp)
names(stopList) <- c("data", "i_stop", "resident","n","n_pp")
# now I need to leave the projection and keep resident, i_stop and sim_stop
if (multiple == FALSE)
{
if (print_it) cat(sprintf(
"A mutant from species %s has appeared at time %s\n",
resident,
i_time
))}
else
{
if (print_it) cat(sprintf(
"Mutants from species %s have appeared at time %s\n",
resident,
i_time
))}
return(stopList)
}
}
# and end
if (missing(i_stop) == FALSE) sim@n[t_init+1,,]<- NA # need to get rid of the initialisation for the last run before exiting
# I'm keeping the if to not have this enable during the initialisation phase
# I'm assuming that I have at least one mutant per run
if (data == TRUE) return(list(energy,rd,eggs,sim,food,death,Tdeath,Pdeath,trouveF,trouveB)) # when I want to run the sim but get something else from it (like any other data)
else return(sim)
}