forked from Lin956/STTNS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSTTNS.py
245 lines (192 loc) · 8.84 KB
/
STTNS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import torch
import torch.nn as nn
from GCN_models import GCN
from One_hot_encoder import One_hot_encoder
import numpy as np
# model input shape:[1, N, T]
# model output shape:[N, T]
class STTNSNet(nn.Module):
def __init__(self, adj, in_channels, embed_size, time_num,
num_layers, T_dim, output_T_dim, heads, dropout, forward_expansion):
self.num_layers = num_layers
super(STTNSNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels, embed_size, 1)
self.transformer = Transformer(embed_size, heads, adj, time_num, dropout, forward_expansion)
self.conv2 = nn.Conv2d(T_dim, output_T_dim, 1)
self.conv3 = nn.Conv2d(embed_size, in_channels, 1)
def forward(self, x, t):
# input x:[C, N, T]
x = x.unsqueeze(0) # [1, C, N, T]
# 通道变换
x = self.conv1(x) # [1, embed_size, N, T]
x = x.squeeze(0) # [embed_size, N, T]
x = x.permute(1, 2, 0) # [N, T, embed_size]
x = self.transformer(x, x, x, t, self.num_layers) # [N, T, embed_size]
# 预测时间T_dim,转换时间维数
x = x.unsqueeze(0) # [1, N, T, C], C = embed_size
x = x.permute(0, 2, 1, 3) # [1, T, N, C]
x = self.conv2(x) # [1, out_T_dim, N, C]
# 将通道降为in_channels
x = x.permute(0, 3, 2, 1) # [1, C, N, out_T_dim]
x = self.conv3(x) # [1, in_channels, N, out_T_dim]
out = x.unsqueeze(0).unsqueeze(0)
return out
class Transformer(nn.Module):
def __init__(self, embed_size, heads, adj, time_num, dropout, forward_expansion):
super(Transformer, self).__init__()
self.sttnblock = STTNSNetBlock(embed_size, heads, adj, time_num, dropout, forward_expansion)
def forward(self, query, key, value, t, num_layers):
q, k, v = query, key, value
for i in range(num_layers):
out = self.sttnblock(q, k, v, t)
q, k, v = out, out, out
return out
# model input:[N, T, C]
# model output[N, T, C]
class STTNSNetBlock(nn.Module):
def __init__(self, embed_size, heads, adj, time_num, dropout, forward_expansion):
super(STTNSNetBlock, self).__init__()
self.SpatialTansformer = STransformer(embed_size, heads, adj, dropout, forward_expansion)
self.TemporalTransformer = TTransformer(embed_size, heads, time_num, dropout, forward_expansion)
self.norm1 = nn.LayerNorm(embed_size)
self.norm2 = nn.LayerNorm(embed_size)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, t):
out1 = self.norm1(self.SpatialTansformer(query, key, value) + query)
out2 = self.dropout(self.norm2(self.TemporalTransformer(out1, out1, out1, t) + out1))
return out2
# model input:[N, T, C]
# model output:[N, T, C]
class STransformer(nn.Module):
def __init__(self, embed_size, heads, adj, dropout, forward_expansion):
super(STransformer, self).__init__()
self.adj = adj
self.D_S = nn.Parameter(adj)
self.embed_linear = nn.Linear(adj.shape[0], embed_size)
self.attention = SSelfattention(embed_size, heads)
self.norm1 = nn.LayerNorm(embed_size)
self.norm2 = nn.LayerNorm(embed_size)
self.feed_forward = nn.Sequential(
nn.Linear(embed_size, forward_expansion * embed_size),
nn.ReLU(),
nn.Linear(forward_expansion * embed_size, embed_size),
)
# 调用GCN
self.gcn = GCN(embed_size, embed_size * 2, embed_size, dropout)
self.norm_adj = nn.InstanceNorm2d(1) # 对邻接矩阵归一化
self.dropout = nn.Dropout(dropout)
self.fs = nn.Linear(embed_size, embed_size)
self.fg = nn.Linear(embed_size, embed_size)
def forward(self, query, key, value):
# Spatial Embedding 部分
N, T, C = query.shape
D_S = self.embed_linear((self.D_S))
D_S = D_S.expand(T, N, C)
D_S = D_S.permute(1, 0, 2)
# GCN 部分
X_G = torch.Tensor(query.shape[0], 0, query.shape[2])
self.adj = self.adj.unsqueeze(0).unsqueeze(0)
self.adj = self.norm_adj(self.adj)
self.adj = self.adj.squeeze(0).squeeze(0)
for t in range(query.shape[1]):
o = self.gcn(query[:, t, :], self.adj)
o = o.unsqueeze(1) # shape [N, 1, C]
X_G = torch.cat((X_G, o), dim=1)
# spatial transformer
query = query + D_S
value = value + D_S
key = key + D_S
attn = self.attention(value, key, query) # [N, T, C]
M_s = self.dropout(self.norm1(attn + query))
feedforward = self.feed_forward(M_s)
U_s = self.dropout(self.norm2(feedforward + M_s))
# 融合
g = torch.sigmoid(self.fs(U_s) + self.fg(X_G))
out = g * U_s + (1 - g) * X_G
return out
# model input:[N,T,C]
# model output:[N,T,C]
class SSelfattention(nn.Module):
def __init__(self, embed_size, heads):
super(SSelfattention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.per_dim = embed_size // heads
self.values = nn.Linear(self.per_dim, self.per_dim, bias=False)
self.queries = nn.Linear(self.per_dim, self.per_dim, bias=False)
self.keys = nn.Linear(self.per_dim, self.per_dim, bias=False)
self.fc = nn.Linear(embed_size, embed_size)
def forward(self, values, keys, query):
N, T, C = query.shape
query = values.reshape(N, T, self.heads, self.per_dim)
keys = keys.reshape(N, T, self.heads, self.per_dim)
values = values.reshape(N, T, self.heads, self.per_dim)
# q, k, v:[N, T, heads, per_dim]
queries = self.queries(query)
keys = self.keys(keys)
values = self.values(values)
# spatial self-attention
attn = torch.einsum("qthd, kthd->qkth", (queries, keys)) # [N, N, T, heads]
attention = torch.softmax(attn / (self.embed_size ** (1 / 2)), dim=1)
out = torch.einsum("qkth,kthd->qthd", (attention, values)) # [N, T, heads, per_dim]
out = out.reshape(N, T, self.heads * self.per_dim) # [N, T, C]
out = self.fc(out)
return out
# input[N, T, C]
class TTransformer(nn.Module):
def __init__(self, embed_size, heads, time_num, dropout, forward_expansion):
super(TTransformer, self).__init__()
# Temporal embedding One hot
self.time_num = time_num
self.one_hot = One_hot_encoder(embed_size, time_num) # temporal embedding选用one-hot方式 或者
self.temporal_embedding = nn.Embedding(time_num, embed_size) # temporal embedding选用nn.Embedding
self.attention = TSelfattention(embed_size, heads)
self.norm1 = nn.LayerNorm(embed_size)
self.norm2 = nn.LayerNorm(embed_size)
self.feed_forward = nn.Sequential(
nn.Linear(embed_size, forward_expansion * embed_size),
nn.ReLU(),
nn.Linear(forward_expansion * embed_size, embed_size)
)
self.dropout = nn.Dropout(dropout)
def forward(self, query, key, value, t):
# q, k, v:[N, T, C]
N, T, C = query.shape
D_T = self.one_hot(t, N, T) # temporal embedding选用one-hot方式 或者
D_T = self.temporal_embedding(torch.arange(0, T)) # temporal embedding选用nn.Embedding
D_T = D_T.expand(N, T, C)
# TTransformer
x = D_T + query
attention = self.attention(x, x, x)
M_t = self.dropout(self.norm1(attention + x))
feedforward = self.feed_forward(M_t)
U_t = self.dropout(self.norm2(M_t + feedforward))
out = U_t + x + M_t
return out
class TSelfattention(nn.Module):
def __init__(self, embed_size, heads):
super(TSelfattention, self).__init__()
self.embed_size = embed_size
self.heads = heads
self.per_dim = self.embed_size // heads
self.queries = nn.Linear(self.per_dim, self.per_dim)
self.keys = nn.Linear(self.per_dim, self.per_dim)
self.values = nn.Linear(self.per_dim, self.per_dim)
self.fc = nn.Linear(embed_size, embed_size)
def forward(self, value, key, query):
# q, k, v:[N, T, C]
N, T, C = query.shape
# q, k, v:[N,T,heads, per_dim]
keys = key.reshape(N, T, self.heads, self.per_dim)
queries = query.reshape(N, T, self.heads, self.per_dim)
values = value.reshape(N, T, self.heads, self.per_dim)
keys = self.keys(keys)
values = self.values(values)
queries = self.queries(queries)
# compute temperal self-attention
attnscore = torch.einsum("nqhd, nkhd->nqkh", (queries, keys)) # [N, T, T, heads]
attention = torch.softmax(attnscore / (self.embed_size ** (1/2)), dim=2)
out = torch.einsum("nqkh, nkhd->nqhd", (attention, values)) # [N, T, heads, per_dim]
out = out.reshape(N, T, self.embed_size)
out = self.fc(out)
return out