diff --git a/_posts/2024-12-30-Minimal-flow-matching-and-rectified-flow-model-from-scratch.md b/_posts/2024-12-30-Minimal-flow-matching-and-rectified-flow-model-from-scratch.md index 8f71e99..0f5bd83 100644 --- a/_posts/2024-12-30-Minimal-flow-matching-and-rectified-flow-model-from-scratch.md +++ b/_posts/2024-12-30-Minimal-flow-matching-and-rectified-flow-model-from-scratch.md @@ -17,7 +17,8 @@ In a [previous post we looked at implementing a diffusion-based generative machi [As before]({{ site.baseurl }}{% post_url 2023-03-22-Minimal-diffusion-model-from-scratch-for-generative-machine-learning %}), we will try to learn a spiral distribution in 2 dimensions. We start from an initial state (which does not *have* to be a Gaussian, but it is just simple). To do this we will create some functions to generate data from each distribution (with noise) and a convenience function for plotting: ```mathematica -createGaussianData[nPoints_:1000, scale_:1.0] := RandomVariate[NormalDistribution[], {nPoints, 2}]*scale +createGaussianData[nPoints_:1000, scale_:1.0] := + RandomVariate[NormalDistribution[], {nPoints, 2}] * scale createSpiralData[nPoints_:1000, scale_:1.0] := With[ {spiral = (scale/(2 Pi))*{# Cos[#], # Sin[#]}& /@ RandomReal[{0, 6 Pi}, nPoints], @@ -25,7 +26,8 @@ createSpiralData[nPoints_:1000, scale_:1.0] := With[ spiral + noise] plot[data_, range_:{-Pi, Pi}] := ListPlot[ data, - AspectRatio -> 1, PlotRange -> {range, range} , Frame -> True, PlotStyle -> Red, ImageSize -> Medium] + AspectRatio -> 1, PlotRange -> {range, range}, Frame -> True, + PlotStyle -> Red, ImageSize -> Medium] ``` Generate source and target examples, then plot them: @@ -50,7 +52,7 @@ The initial velocities point every which way: ```mathematica With[ - {velocities = assignVelocity[source, target]},(* vectorized! *) + {velocities = assignVelocity[source, target]}, (* vectorized! *) ListVectorPlot[ Transpose[{source, velocities}], VectorScaling -> Automatic, PlotLegends -> Automatic]] @@ -119,8 +121,9 @@ Next, we use the trained neural network as a velocity field to move the particle ```mathematica fwdEuler[ model_, dt_][position_, time_] := With[ {velocity = model[ - <|"position" -> position, "time" -> ConstantArray[time, Length[position]] |>]}, - position + velocity*dt] + <|"position" -> position, + "time" -> ConstantArray[time, Length[position]] |>]}, + position + velocity*dt ] integrate[stepFn_, model_, nSteps_ : 100][source_] := Fold[ @@ -145,7 +148,7 @@ plot@ integrate[fwdEuler, trained]@ source ![1tzpmk3wltoyn](/blog/images/2024/12/30/1tzpmk3wltoyn.png) -Let's have some fun and see how it evolves in time...the infamous "collapse inward and push outward behavior". Easy enough to do in memory; we just replace Fold with FoldList, and then ListAnimate the collection of plots: +Let's have some fun and see how it evolves in time...the infamous "collapse inward and push outward behavior". Easy enough to do in memory; we just replace `Fold` with `FoldList`, and then `ListAnimate` the collection of plots: ```mathematica animatedIntegrate[stepFn_, model_, nSteps_ : 100][source_] := @@ -230,7 +233,7 @@ All that is left is to modify the sampler so that it uses the previously trained reflowSampler[teacherNet_] := Function[ Module[{source, target, time}, source = createGaussianData[#BatchSize]; - target = integrate[rk4, teacherNet, 20]@source; + target = integrate[rk4, teacherNet, 20]@ source; time = warpTime@ RandomReal[{0, 1}, #BatchSize]; <|"position" -> (1 - time)*source + time*target, "time" -> time, @@ -244,7 +247,7 @@ reflowSampler[teacherNet_] := Function[ ![1svswdr87xxhe](/blog/images/2024/12/30/1svswdr87xxhe.png) -Now take a look: We do not have to use the RK4 integrator here because the trajectories are quite simple: +Now take a look: We do not even have to use the RK4 integrator here because the trajectories are quite simple: ```mathematica animatedIntegrate[fwdEuler, reflow]@ source