-
Notifications
You must be signed in to change notification settings - Fork 105
/
Copy pathmodel.py
294 lines (242 loc) · 9.02 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
from __future__ import print_function, division
# pytorch imports
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torch.autograd import Variable
import torchvision
from torchvision import datasets, models, transforms
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms, utils
# image imports
from skimage import io, transform
from PIL import Image
# general imports
import os
import time
from shutil import copyfile
from shutil import rmtree
# data science imports
import pandas as pd
import numpy as np
import csv
import cxr_dataset as CXR
import eval_model as E
use_gpu = torch.cuda.is_available()
gpu_count = torch.cuda.device_count()
print("Available GPU count:" + str(gpu_count))
def checkpoint(model, best_loss, epoch, LR):
"""
Saves checkpoint of torchvision model during training.
Args:
model: torchvision model to be saved
best_loss: best val loss achieved so far in training
epoch: current epoch of training
LR: current learning rate in training
Returns:
None
"""
print('saving')
state = {
'model': model,
'best_loss': best_loss,
'epoch': epoch,
'rng_state': torch.get_rng_state(),
'LR': LR
}
torch.save(state, 'results/checkpoint')
def train_model(
model,
criterion,
optimizer,
LR,
num_epochs,
dataloaders,
dataset_sizes,
weight_decay):
"""
Fine tunes torchvision model to NIH CXR data.
Args:
model: torchvision model to be finetuned (densenet-121 in this case)
criterion: loss criterion (binary cross entropy loss, BCELoss)
optimizer: optimizer to use in training (SGD)
LR: learning rate
num_epochs: continue training up to this many epochs
dataloaders: pytorch train and val dataloaders
dataset_sizes: length of train and val datasets
weight_decay: weight decay parameter we use in SGD with momentum
Returns:
model: trained torchvision model
best_epoch: epoch on which best model val loss was obtained
"""
since = time.time()
start_epoch = 1
best_loss = 999999
best_epoch = -1
last_train_loss = -1
# iterate over epochs
for epoch in range(start_epoch, num_epochs + 1):
print('Epoch {}/{}'.format(epoch, num_epochs))
print('-' * 10)
# set model to train or eval mode based on whether we are in train or
# val; necessary to get correct predictions given batchnorm
for phase in ['train', 'val']:
if phase == 'train':
model.train(True)
else:
model.train(False)
running_loss = 0.0
i = 0
total_done = 0
# iterate over all data in train/val dataloader:
for data in dataloaders[phase]:
i += 1
inputs, labels, _ = data
batch_size = inputs.shape[0]
inputs = Variable(inputs.cuda())
labels = Variable(labels.cuda()).float()
outputs = model(inputs)
# calculate gradient and update parameters in train phase
optimizer.zero_grad()
loss = criterion(outputs, labels)
if phase == 'train':
loss.backward()
optimizer.step()
running_loss += loss.data * batch_size
epoch_loss = running_loss / dataset_sizes[phase]
if phase == 'train':
last_train_loss = epoch_loss
print(phase + ' epoch {}:loss {:.4f} with data size {}'.format(
epoch, epoch_loss, dataset_sizes[phase]))
# decay learning rate if no val loss improvement in this epoch
if phase == 'val' and epoch_loss > best_loss:
print("decay loss from " + str(LR) + " to " +
str(LR / 10) + " as not seeing improvement in val loss")
LR = LR / 10
# create new optimizer with lower learning rate
optimizer = optim.SGD(
filter(
lambda p: p.requires_grad,
model.parameters()),
lr=LR,
momentum=0.9,
weight_decay=weight_decay)
print("created new optimizer with LR " + str(LR))
# checkpoint model if has best val loss yet
if phase == 'val' and epoch_loss < best_loss:
best_loss = epoch_loss
best_epoch = epoch
checkpoint(model, best_loss, epoch, LR)
# log training and validation loss over each epoch
if phase == 'val':
with open("results/log_train", 'a') as logfile:
logwriter = csv.writer(logfile, delimiter=',')
if(epoch == 1):
logwriter.writerow(["epoch", "train_loss", "val_loss"])
logwriter.writerow([epoch, last_train_loss, epoch_loss])
total_done += batch_size
if(total_done % (100 * batch_size) == 0):
print("completed " + str(total_done) + " so far in epoch")
# break if no val loss improvement in 3 epochs
if ((epoch - best_epoch) >= 3):
print("no improvement in 3 epochs, break")
break
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
# load best model weights to return
checkpoint_best = torch.load('results/checkpoint')
model = checkpoint_best['model']
return model, best_epoch
def train_cnn(PATH_TO_IMAGES, LR, WEIGHT_DECAY):
"""
Train torchvision model to NIH data given high level hyperparameters.
Args:
PATH_TO_IMAGES: path to NIH images
LR: learning rate
WEIGHT_DECAY: weight decay parameter for SGD
Returns:
preds: torchvision model predictions on test fold with ground truth for comparison
aucs: AUCs for each train,test tuple
"""
NUM_EPOCHS = 100
BATCH_SIZE = 16
try:
rmtree('results/')
except BaseException:
pass # directory doesn't yet exist, no need to clear it
os.makedirs("results/")
# use imagenet mean,std for normalization
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
N_LABELS = 14 # we are predicting 14 labels
# load labels
df = pd.read_csv("nih_labels.csv", index_col=0)
# define torchvision transforms
data_transforms = {
'train': transforms.Compose([
transforms.RandomHorizontalFlip(),
transforms.Resize(224),
# because resize doesn't always give 224 x 224, this ensures 224 x
# 224
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]),
'val': transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean, std)
]),
}
# create train/val dataloaders
transformed_datasets = {}
transformed_datasets['train'] = CXR.CXRDataset(
path_to_images=PATH_TO_IMAGES,
fold='train',
transform=data_transforms['train'])
transformed_datasets['val'] = CXR.CXRDataset(
path_to_images=PATH_TO_IMAGES,
fold='val',
transform=data_transforms['val'])
dataloaders = {}
dataloaders['train'] = torch.utils.data.DataLoader(
transformed_datasets['train'],
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=8)
dataloaders['val'] = torch.utils.data.DataLoader(
transformed_datasets['val'],
batch_size=BATCH_SIZE,
shuffle=True,
num_workers=8)
# please do not attempt to train without GPU as will take excessively long
if not use_gpu:
raise ValueError("Error, requires GPU")
model = models.densenet121(weights='DEFAULT')
num_ftrs = model.classifier.in_features
# add final layer with # outputs in same dimension of labels with sigmoid
# activation
model.classifier = nn.Sequential(
nn.Linear(num_ftrs, N_LABELS), nn.Sigmoid())
# put model on GPU
model = model.cuda()
# define criterion, optimizer for training
criterion = nn.BCELoss()
optimizer = optim.SGD(
filter(
lambda p: p.requires_grad,
model.parameters()),
lr=LR,
momentum=0.9,
weight_decay=WEIGHT_DECAY)
dataset_sizes = {x: len(transformed_datasets[x]) for x in ['train', 'val']}
# train model
model, best_epoch = train_model(model, criterion, optimizer, LR, num_epochs=NUM_EPOCHS,
dataloaders=dataloaders, dataset_sizes=dataset_sizes, weight_decay=WEIGHT_DECAY)
# get preds and AUCs on test fold
preds, aucs = E.make_pred_multilabel(
data_transforms, model, PATH_TO_IMAGES)
return preds, aucs