-
Notifications
You must be signed in to change notification settings - Fork 4
/
ploting.py
46 lines (31 loc) · 1.38 KB
/
ploting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import numpy as np
class graph:
def plotting_decision_regions(selft,X, y, classifier, resolution=0.002):
markers = ('s', 'o', 'x', '^', 'v')
colors = ('green', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
# plot the decision surface
x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
np.arange(x2_min, x2_max, resolution))
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
# plot class samples
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1], alpha=0.8, c=cmap(idx), edgecolor='black', marker=markers[idx], label=cl)
plt.title("Perceptron Single layer - Decision regions")
plt.tight_layout()
plt.show()
plt.savefig("result.png")
def plotting_errors(self,model):
plt.plot(range(1, len(model.errors_) + 1), model.errors_, marker = 's');
plt.xlabel("Numero de epocas")
plt.ylabel("Numero de actualizaciones");
plt.tight_layout()
plt.show()