-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathjava-sim-winn2-opt.py
202 lines (165 loc) · 8.04 KB
/
java-sim-winn2-opt.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
# -*- coding: utf-8 -*-
"""
Winnow Similarity Detection for Java Code (alternative implementation)
Martinez-Gil, J. (2024). Source Code Clone Detection Using Unsupervised Similarity Measures. arXiv preprint arXiv:2401.09885.
@author: Jorge Martinez-Gil
"""
import os
import difflib
import javalang
from javalang.tree import CompilationUnit, MethodDeclaration
from collections import Counter
def winnow(text, k, w):
# Split the text into k-grams
k_grams = [text[i:i+k] for i in range(len(text)-k+1)]
# Initialize the window and fingerprint
window = []
fingerprint = []
# Loop through each k-gram
for i, k_gram in enumerate(k_grams):
# Add the k-gram to the window
window.append(k_gram)
# If the window is full, select the smallest hash value
if len(window) == w:
min_hash = float('inf')
min_index = -1
for j, k_gram in enumerate(window):
hash_value = hash(k_gram)
if hash_value < min_hash:
min_hash = hash_value
min_index = j
fingerprint.append(min_hash)
# Remove the oldest k-gram from the window
window.pop(min_index)
return fingerprint
def similarity(code1, code2, k=5, w=10, threshold=0.5):
# Generate fingerprints for both code snippets
fingerprint1 = winnow(code1, k, w)
fingerprint2 = winnow(code2, k, w)
# Calculate the number of matching fingerprints
matches = 0
for fp1 in fingerprint1:
for fp2 in fingerprint2:
if fp1 == fp2:
matches += 1
break
# Calculate the similarity score
similarity_score = matches / min(len(fingerprint1), len(fingerprint2))
return similarity_score
def extract_method_names(node):
method_names = []
if isinstance(node, CompilationUnit):
for _, method_declaration in node.filter(MethodDeclaration):
method_names.append(method_declaration.name)
return method_names
def calculate_similarity_ratio(code1, code2):
seq_matcher = difflib.SequenceMatcher(None, code1, code2)
similarity_ratio = seq_matcher.ratio()
return similarity_ratio
def semantic_clone_detection(code1, code2, threshold=0.8):
tree1 = javalang.parse.parse(code1)
tree2 = javalang.parse.parse(code2)
method_names1 = extract_method_names(tree1)
method_names2 = extract_method_names(tree2)
common_method_names = set(method_names1) & set(method_names2)
similarity_ratio = calculate_similarity_ratio(code1, code2)
if common_method_names and similarity_ratio >= threshold:
return True, common_method_names, similarity_ratio
else:
return False, None, similarity_ratio
# Define the path to the IR-Plag-Dataset folder
dataset_path = os.path.join(os.getcwd(), "IR-Plag-Dataset")
# Define a list of similarity thresholds to iterate over
similarity_thresholds = [0.48, 0.5, 0.52]
# Initialize variables to keep track of the best result
best_threshold = 0
best_accuracy = 0
# Initialize counters
TP = 0
FP = 0
FN = 0
# Loop through each similarity threshold and calculate accuracy
for SIMILARITY_THRESHOLD in similarity_thresholds:
# Initialize the counters
total_cases = 0
over_threshold_cases_plagiarized = 0
over_threshold_cases_non_plagiarized = 0
cases_plag = 0
cases_non_plag = 0
# Loop through each subfolder in the dataset
for folder_name in os.listdir(dataset_path):
folder_path = os.path.join(dataset_path, folder_name)
if os.path.isdir(folder_path):
# Find the Java file in the original folder
original_path = os.path.join(folder_path, 'original')
java_files = [f for f in os.listdir(original_path) if f.endswith('.java')]
if len(java_files) == 1:
java_file = java_files[0]
with open(os.path.join(original_path, java_file), 'r') as f:
code1 = f.read()
# print(f"Found {java_file} in {original_path} for {folder_name}")
# Loop through each subfolder in the plagiarized and non-plagiarized folders
for subfolder_name in ['plagiarized', 'non-plagiarized']:
subfolder_path = os.path.join(folder_path, subfolder_name)
if os.path.isdir(subfolder_path):
# Loop through each Java file in the subfolder
for root, dirs, files in os.walk(subfolder_path):
for java_file in files:
if java_file.endswith('.java'):
with open(os.path.join(root, java_file), 'r') as f:
code2 = f.read()
# print(f"Found {java_file} in {root} for {folder_name}")
# Calculate the similarity ratio
is_clone, common_methods, similarity_ratio = semantic_clone_detection(code1, code2)
if is_clone:
similarity_ratio = 0.0
else:
similarity_ratio = similarity(code1, code2)
#print(f"{subfolder_name},{similarity_ratio:.2f}")
# Update the counters based on the similarity ratio
if subfolder_name == 'plagiarized':
cases_plag += 1
if similarity_ratio >= SIMILARITY_THRESHOLD:
over_threshold_cases_plagiarized += 1
elif subfolder_name == 'non-plagiarized':
cases_non_plag += 1
if similarity_ratio <= SIMILARITY_THRESHOLD:
over_threshold_cases_non_plagiarized += 1
total_cases += 1
# Update the counters based on the similarity ratio
if subfolder_name == 'plagiarized':
cases_plag += 1
if similarity_ratio >= SIMILARITY_THRESHOLD:
TP += 1 # True positive: plagiarized and identified as plagiarized
else:
FN += 1 # False negative: plagiarized but identified as non-plagiarized
elif subfolder_name == 'non-plagiarized':
cases_non_plag += 1
if similarity_ratio <= SIMILARITY_THRESHOLD:
over_threshold_cases_non_plagiarized += 1
else:
FP += 1 # False positive: non-plagiarized but identified as plagiarized
else:
print(f"Error: Found {len(java_files)} Java files in {original_path} for {folder_name}")
# Calculate accuracy for the current threshold
if total_cases > 0:
accuracy = (over_threshold_cases_non_plagiarized + over_threshold_cases_plagiarized) / total_cases
if accuracy > best_accuracy:
best_accuracy = accuracy
best_threshold = SIMILARITY_THRESHOLD
# Calculate precision and recall
if TP + FP > 0:
precision = TP / (TP + FP)
else:
precision = 0
if TP + FN > 0:
recall = TP / (TP + FN)
else:
recall = 0
# Calculate F-measure
if precision + recall > 0:
f_measure = 2 * (precision * recall) / (precision + recall)
else:
f_measure = 0
# Print the best threshold and accuracy
print(f"{os.path.basename(__file__)} - The best threshold is {best_threshold} with an accuracy of {best_accuracy:.2f}, Precision: {precision:.2f}, Recall: {recall:.2f}, F-measure: {f_measure:.2f}")