-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmetrics.py
35 lines (26 loc) · 1.11 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import pytrec_eval
from typing import List, Dict, Tuple
@torch.no_grad()
def accuracy(output: torch.tensor, target: torch.tensor, topk=(1,)) -> List[float]:
"""Computes the accuracy over the k top predictions for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size).item())
return res
@torch.no_grad()
def batch_mrr(output: torch.tensor, target: torch.tensor) -> float:
assert len(output.shape) == 2
assert len(target.shape) == 1
sorted_score, sorted_indices = torch.sort(output, dim=-1, descending=True)
_, rank = torch.nonzero(sorted_indices.eq(target.unsqueeze(-1)).long(), as_tuple=True)
assert rank.shape[0] == output.shape[0]
rank = rank + 1
mrr = torch.sum(100 / rank.float()) / rank.shape[0]
return mrr.item()