-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathformula_double.py
157 lines (121 loc) · 5.32 KB
/
formula_double.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
from utility import find_unit_volume, incgamma
class DoubleDensityFunctionalFormulas:
def __init__(self, dims=None):
"""
Arguments
---------
dims: np.array
"""
self.dims = np.array(dims, dtype=float)
self.unit_volumes = find_unit_volume(self.dims)
def functionals(self, alphas):
return np.stack([self.kl_divergence] +
[self.alpha_divergence(alpha) for alpha in alphas] +
[self.logarithmic_alpha_divergence(alpha) for alpha in alphas],
0)
@property
def kl_divergence(self):
raise NotImplementedError
def alpha_divergence(self, alpha):
raise NotImplementedError
def logarithmic_alpha_divergence(self, alpha):
raise NotImplementedError
@property
def asymptotic_nn_classification_error(self):
raise NotImplementedError
@property
def jensen_shannon_divergence(self):
raise NotImplementedError
class DoubleDensityFunctionalFormulasGaussian(DoubleDensityFunctionalFormulas):
def __init__(self, r=np.inf, sigma=1, dims=None):
"""
Arguments
---------
dims: np.array
r: float
truncation radius
"""
super().__init__(dims=dims)
assert sigma >= 1.
self.r = r
self.sigma = sigma
self.cdr = lambda alpha: (2 ** (self.dims / 2 - 1)) * self.dims * self.unit_volumes * \
incgamma(self.dims / 2, (r ** 2) / (2 * alpha))
@property
def kl_divergence(self):
dims = self.dims
r = self.r
divergence = dims * np.log(self.sigma) + np.log(self.cdr(self.sigma ** 2) / self.cdr(1)) - \
(1 - (self.sigma ** (-2.))) * incgamma(self.dims / 2 + 1, (r ** 2) / 2) / \
(incgamma(self.dims / 2, (r ** 2) / 2))
return divergence
def alpha_divergence(self, alpha):
assert alpha >= 1
dims = self.dims
alpha_tilde = 1 - (1 - alpha) * (1 - (self.sigma ** (-2.)))
divergence = ((self.sigma ** (-2.)) ** (dims / 2 * (1 - alpha))) / (alpha_tilde ** (dims / 2)) * \
self.cdr(1 / alpha_tilde) / self.cdr(1) * \
(self.cdr(self.sigma ** 2) / self.cdr(1)) ** (alpha - 1)
return divergence
def generalized_alpha_divergence(self, alpha):
assert alpha >= 1
dims = self.dims
r = self.r
# Formula for $p**{\alpha-1}\ln (p/q)$
unit_volumes = self.unit_volumes
divergence = 1 / 2 * self.cdr(1 / alpha) * dims * np.log((self.sigma ** 2)) / \
((alpha ** (dims / 2)) * (self.cdr(1) ** alpha)) - \
((1 - self.sigma ** (-2.)) * (2 ** (dims / 2 - 1)) * dims * unit_volumes *
incgamma(dims/2 + 1, alpha * (r ** 2)) /
((alpha ** (1 + (dims / 2))) * (self.cdr(1) ** alpha))) + \
(self.cdr(1 / alpha) / ((alpha ** (dims / 2)) * (self.cdr(1) ** alpha)) *
np.log(self.cdr(self.sigma ** 2) / self.cdr(1)))
return divergence
def logarithmic_alpha_divergence(self, alpha):
dims = self.dims
r = self.r
alpha_tilde = 1 - (1 - alpha) * (1 - (self.sigma ** (-2.)))
divergence = (self.sigma ** dims * self.cdr(self.sigma ** 2) / self.cdr(1)) ** (alpha - 1) * \
(np.log(self.sigma ** dims * self.cdr(self.sigma ** 2) / self.cdr(1)) *
self.cdr(1 / alpha_tilde) / self.cdr(1) / (alpha_tilde ** (dims / 2)) -
(1 - (self.sigma ** (-2.))) *
incgamma(self.dims / 2 + 1, (alpha_tilde * r ** 2) / 2) /
(incgamma(self.dims / 2, (r ** 2) / 2)) / alpha_tilde ** (dims / 2 + 1))
return divergence
class DoubleDensityFunctionalFormulasUniform(DoubleDensityFunctionalFormulas):
def __init__(self, a=1, b=1, dims=None):
"""
Arguments
---------
dims: np.array
a: float
X ~ Unif([0,a]^dims)
b: float
Y ~ Unif([0,b]^dims)
"""
super().__init__(dims=dims)
# assert a <= b
self.a = np.float(a)
self.b = np.float(b)
@property
def kl_divergence(self):
return self.dims * np.log(self.b / self.a)
def alpha_divergence(self, alpha):
return (self.b / self.a) ** ((alpha - 1) * self.dims)
def generalized_alpha_divergence(self, alpha):
return (self.a ** ((1 - alpha) * self.dims)) * self.dims * np.log(self.b / self.a)
def logarithmic_alpha_divergence(self, alpha):
return ((self.a / self.b) ** ((1 - alpha) * self.dims)) * self.dims * np.log(self.b / self.a)
@property
def asymptotic_nn_classification_error(self):
p = (1 / self.a) ** self.dims
q = (1 / self.b) ** self.dims
return q / (p + q)
@property
def jensen_shannon_divergence(self):
c = (self.a / self.b) ** self.dims
return (np.log(2) - 1 / 2 * (c * np.log(1 + 1 / c) + np.log(1 + c))) / 2
if __name__ == '__main__':
print(DoubleDensityFunctionalFormulasGaussian(r=np.inf, sigma=2, dims=np.arange(1, 11)).functionals(alphas=[1]))
print(DoubleDensityFunctionalFormulasGaussian(r=10, sigma=2, dims=np.arange(1, 11)).functionals(alphas=[1]))