-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
214 lines (178 loc) · 6.38 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
import torch
import torch.nn as nn
import torch.nn.functional as F
from models import resnet, mae
from utils import utils
off_diagonal = utils.off_diagonal
class BarlowTwinsHead(nn.Module):
def __init__(self, cfg, in_dim):
super().__init__()
self.cfg = cfg
sizes = [in_dim] + self.cfg.projector_n_hidden_layers*[self.cfg.projector_hidden_dim] + [self.cfg.projector_out_dim]
layers = []
for i in range(len(sizes) - 2):
layers.append(nn.Linear(sizes[i], sizes[i + 1], bias=False))
layers.append(nn.BatchNorm1d(sizes[i + 1]))
layers.append(nn.ReLU(inplace=True))
layers.append(nn.Linear(sizes[-2], sizes[-1], bias=False))
self.projector = nn.Sequential(*layers)
def forward(self, x, ncrops=2):
x_crops = x.chunk(ncrops)
z = torch.empty(0).to(x_crops[0].device)
for _x in x_crops:
_z = self.projector(_x)
z = torch.cat((z, _z))
return z
class BarlowTwinsPredictor(nn.Module):
def __init__(self, in_dim, use=True):
super().__init__()
self.predictor = nn.Identity()
if use:
self.predictor = nn.Sequential(
nn.Linear(in_dim, in_dim, bias=False),
nn.BatchNorm1d(in_dim),
nn.ReLU(inplace=True),
nn.Linear(in_dim, in_dim, bias=False),
)
def forward(self, x, ncrops=2):
x_crops = x.chunk(ncrops)
z = torch.empty(0).to(x_crops[0].device)
for _x in x_crops:
_z = self.predictor(_x)
z = torch.cat((z, _z))
return z
class ModelWrapper(nn.Module):
def __init__(self, cfg):
super().__init__()
self.cfg = cfg
self._setup_model()
def _setup_model(self):
if self.cfg.model_type == 'resnet50':
self.encoder = resnet.resnet50()
self.encoder.fc = nn.Identity()
self.encoder.embed_dim = 2048
elif self.cfg.model_type == 'resnet50_ReGP_NRF':
self.encoder = resnet.resnet50_ReGP_NRF()
self.encoder.fc = nn.Identity()
self.encoder.embed_dim = 16384
elif self.cfg.model_type == 'resnet18':
self.encoder = resnet.resnet18()
self.encoder.fc = nn.Identity()
self.encoder.embed_dim = 512
elif self.cfg.model_type == 'resnet18_ReGP_NRF':
self.encoder = resnet.resnet18_ReGP_NRF()
self.encoder.fc = nn.Identity()
self.encoder.embed_dim = 4096
elif self.cfg.model_type == 'audiontt':
assert self.cfg.n_mels == 64, f'n_mels must be 64 to use AudioNTT encoder (n_mels set to {self.cfg.n_mels})'
self.encoder = AudioNTT2022(squeeze_excitation=self.cfg.squeeze_excitation)
elif 'vit' in self.cfg.model_type:
conv_stem_bool = self.cfg.model_type.split('_')[0] == 'vitc'
self.encoder = ViT(
dataset=self.cfg.dataset,
size=self.cfg.model_type.split('_')[-1],
patch_size=self.cfg.patch_size,
c=conv_stem_bool,
use_learned_pos_embd=self.cfg.use_learned_pos_embd,
use_mean_pool=self.cfg.use_mean_pool,
use_decoder=self.cfg.masked_recon,
)
else:
raise NotImplementedError(f'Model type {self.cfg.model_type} is not supported')
self.feature_dim = self.encoder.embed_dim
def forward(self, x, mask_ratio=0, masked_recon=False):
if 'vit' in self.cfg.model_type:
return self.encoder(x, mask_ratio=mask_ratio, masked_recon=masked_recon)
return self.encoder(x)
class ViT(nn.Module):
def __init__(self, dataset='fsd50k', size='base', patch_size=None, c=True,
use_learned_pos_embd=False, use_mean_pool=False, use_decoder=False):
super().__init__()
if patch_size is None:
patch_size = [16, 16]
if dataset == 'cifar10':
self.encoder = mae.get_mae_vit(size, patch_size, c, use_learned_pos_embd=use_learned_pos_embd,
img_size=(32,32), in_chans=3)
else:
self.encoder = mae.get_mae_vit(size, patch_size, c, use_learned_pos_embd=use_learned_pos_embd,
use_decoder=use_decoder)
self.embed_dim = self.encoder.embed_dim
self.use_mean_pool = use_mean_pool
def forward(self, x, mask_ratio=0, masked_recon=False):
x = self.encoder(x, mask_ratio=mask_ratio, masked_recon=masked_recon,
mean_pool=self.use_mean_pool)
return x
class AudioNTT2022Encoder(nn.Module):
"""
Encoder network from BYOLA-v2
Copy-paste from https://github.com/nttcslab/byol-a/blob/master/v2/byol_a2/models.py
"""
def __init__(self, n_mels=64, d=3072, base_d=64, mlp_hidden_d=2048, conv_layers=2, stack=True, squeeze_excitation=False):
super().__init__()
convs = [
nn.Conv2d(1, base_d, 3, stride=1, padding=1),
nn.BatchNorm2d(base_d),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
]
if squeeze_excitation:
convs.append(SE_Block(c=base_d))
for c in range(1, conv_layers):
convs.extend([
nn.Conv2d(base_d, base_d, 3, stride=1, padding=1),
nn.BatchNorm2d(base_d),
nn.ReLU(),
nn.MaxPool2d(2, stride=2),
])
if squeeze_excitation:
convs.append(SE_Block(c=base_d))
self.features = nn.Sequential(*convs)
self.conv_d = base_d * (n_mels//(2**conv_layers))
self.fc = nn.Sequential(
nn.Linear(self.conv_d, mlp_hidden_d),
nn.ReLU(),
nn.Dropout(p=0.3),
nn.Linear(mlp_hidden_d, d - self.conv_d),
nn.ReLU(),
)
self.stack = stack
def forward(self, x):
x = self.features(x) # (batch, ch, mel, time)
x = x.permute(0, 3, 2, 1) # (batch, time, mel, ch)
B, T, D, C = x.shape
x = x.reshape((B, T, C*D)) # (batch, time, mel*ch)
x_fc = self.fc(x)
x = torch.hstack([x.transpose(1,2), x_fc.transpose(1,2)]).transpose(1,2) if self.stack else x_fc
return x
class AudioNTT2022(AudioNTT2022Encoder):
def __init__(self, n_mels=64, d=3072, mlp_hidden_d=2048, squeeze_excitation=False):
super().__init__(n_mels=n_mels, d=d, mlp_hidden_d=mlp_hidden_d, squeeze_excitation=squeeze_excitation)
self.embed_dim = d
def forward(self, x):
x = super().forward(x)
x = mean_max_pooling(x)
return x
def mean_max_pooling(frame_embeddings):
assert len(frame_embeddings.shape) == 3 # Batch,Time,Dimension
(x1, _) = torch.max(frame_embeddings, dim=1)
x2 = torch.mean(frame_embeddings, dim=1)
x = x1 + x2
return x
class SE_Block(nn.Module):
"""Copy-paste from https://github.com/moskomule/senet.pytorch/blob/master/senet/se_module.py#L4 """
def __init__(self, c, r=16):
super().__init__()
self.squeeze = nn.AdaptiveAvgPool2d(1)
self.excitation = nn.Sequential(
nn.Linear(c, c // r, bias=False),
nn.ReLU(inplace=True),
nn.Linear(c // r, c, bias=False),
nn.Sigmoid()
)
def forward(self, x):
bs, c, _, _ = x.shape
y = self.squeeze(x).view(bs, c)
y = self.excitation(y).view(bs, c, 1, 1)
return x * y.expand_as(x)
if __name__ == "__main__":
pass