Skip to content
/ NeuroLS Public

Code repository for the corresponding paper "Learning to Control Local Search for Combinatorial Optimization"

License

Notifications You must be signed in to change notification settings

jokofa/NeuroLS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

NeuroLS

This is the repository to the corresponding paper "Learning to Control Local Search for Combinatorial Optimization"

We implement a Neural Local Search solver combining a GNN-based learned meta-controller (meta-heuristic) with local search for routing problems (via VRPH) and job shop scheduling problems (custom solver implementation)

In this repo we provide our GNN models and the final checkpoints used in the experiments. Furthermore, the open source code of our custom JSSP solver and the extensions and python bindings for the VRPH C++ solver.


Setup

Install the requirements as conda environment

conda env create -f requirements.yml

run benchmarks

To run NeuroLS on JSSP Taillard benchmark instances of size 15x15 for 100 steps

python run_benchmark.py -r run_nls_jssp.py -d data/JSSP/benchmark/TA/ -g 15x15 -p jssp -m nls -e eval_jssp --args "env=jssp15x15_unf" -n 100

To run PDR "FIFO" on JSSP Taillard benchmark instances of size 15x15

python run_benchmark.py -r run_pdr.py -d data/JSSP/benchmark/TA/ -g 15x15 -p jssp -m pdr --args "env=jssp15x15_unf" --policy fifo

To run MetaHeuristic "SA" on JSSP Taillard benchmark instances of size 15x15 for 100 steps

python run_benchmark.py -r run_meta_jssp.py -d data/JSSP/benchmark/TA/ -g 15x15 -p jssp -m meta --args "env=jssp15x15_unf" --policy sa -n 100

To run NeuroLS on CVRP Uchoa benchmark instances group n100 for 200 steps

python run_benchmark.py -r run_nls_rp.py -d data/CVRP/benchmark/uchoa/ -g n100 -p cvrp -m nls -e eval_cvrp --args "env=cvrp100_unf" -n 200

Please cite us:

@inproceedings{falkner2022learning,
  title={Learning to Control Local Search for Combinatorial Optimization},
  author={Falkner, {Jonas K.} and Thyssens, Daniela and Bdeir, Ahmad and Schmidt-Thieme, Lars},
  booktitle={Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD)},
  year={2022}
}

example rendered episodes on JSSP15x15 and CVRP100

render_jssp15x15

render_cvrp100