-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_model.py
239 lines (193 loc) · 10.2 KB
/
evaluate_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import numpy as np
import pandas as pd
import torch
import tqdm
import glob
import time
import dcase_dataset
import models
import post_processing as pp
import sed_utils
import dcase_evaluation
import stats_utils
def create_embeddings(model, data_loader, verbose=False):
embeddings = []
probas = []
for x in tqdm.tqdm(data_loader, disable=(not verbose)):
#x = x.view((x.shape[0], 1, x.shape[1], x.shape[2])).double()
x = x.double()
x = x.cuda()
logit, embedding = model(x)
embeddings.append(embedding.detach().cpu().numpy())
probas.append(torch.sigmoid(logit).detach().cpu().numpy())
probas = np.concatenate(probas)
embeddings = np.concatenate(embeddings)
return embeddings, probas
def evaluate(experiment_dir, conf):
root_path = conf['root_path']
csv_paths = conf['csv_paths']
# make predictions
pred_df = predict(experiment_dir, csv_paths, conf, save_probas=False)
pred_df.to_csv(os.path.join(experiment_dir, 'pred.csv'), index=False)
# post-process predictions
merged_pred_df = pp.merge_predictions(pred_df)
merged_pred_df.to_csv(os.path.join(experiment_dir, 'merged_pred.csv'), index=False)
unmachable_pred_df = pp.adaptive_remove_unmatchable_predictions(merged_pred_df, csv_paths, conf['n_shot'])
unmachable_pred_df.to_csv(os.path.join(experiment_dir, 'post_processed_pred.csv'), index=False)
pred_file_path = os.path.join(experiment_dir, 'pred.csv')
overall_scores, scores_per_subset = dcase_evaluation.evaluate(
pred_file_path = pred_file_path,
ref_file_path = root_path,
team_name = "TeamGBG",
dataset = 'VAL',
savepath = experiment_dir,
metadata = [],
verbose = True
)
post_pred_file_path = os.path.join(experiment_dir, 'post_processed_pred.csv')
post_overall_scores, post_scores_per_subset = dcase_evaluation.evaluate(
pred_file_path = post_pred_file_path,
ref_file_path = root_path,
team_name = "TeamGBG",
dataset = 'VAL',
savepath = experiment_dir,
metadata = [],
verbose = True
)
return overall_scores, scores_per_subset, post_overall_scores, post_scores_per_subset
def probability_query(query, n_prototype, p_prototype):
"""
The pseudo-probability of the query point belonging to the positive class.
"""
d_n = euclidean_distance(query, n_prototype)
d_p = euclidean_distance(query, p_prototype)
x = np.array([-d_n, -d_p])
y_proba_p = np.exp(-d_p) / (np.exp(-d_p) + np.exp(-d_n))
return y_proba_p
def predict(experiment_dir, csv_paths, conf, save_probas=False, verbose=False):
# data settings
n_classes = conf['n_classes']
n_time = conf['n_time']
sample_rate = conf['sample_rate']
n_mels = conf['n_mels']
tf_transform_name = conf['tf_transform']
n_shot = conf['n_shot']
window_size = conf['window_size']
hop_size = conf['hop_size']
# model settings
model_name = conf['model_name']
embedding_dim = conf['embedding_dim']
n_layer = conf['n_layer']
channels = conf['channels']
padding = conf['padding']
normalize_input = conf['normalize_input']
normalize_energy = conf['normalize_energy']
tf_transform = sed_utils.get_tf_transform(tf_transform_name, n_mels, sample_rate, normalize=normalize_energy)
window_sizes = np.array([256, 512, 1024, 2048, 4096, 8192])
if normalize_input:
mean = np.load(os.path.join(experiment_dir, "mean.npy"))
std = np.load(os.path.join(experiment_dir, "std.npy"))
else:
mean = 0
std = 1
pos_events = []
for csv_path in tqdm.tqdm(csv_paths, disable=(not verbose)):
wav_path = csv_path.replace('.csv', '.wav')
if conf['adaptive_window_size']:
n_shot_event_lengths = stats_utils.get_nshot_event_lengths(n_shot, csv_path)
average_event_length = np.median(n_shot_event_lengths)
average_event_size = int(sample_rate * average_event_length)
window_size = window_sizes[np.argmin(np.sqrt(np.power(window_sizes-average_event_size, 2)))]
print("average event size: ", average_event_size)
print("adaptive window size: ", window_size)
model_name = "resnet" + "_" + str(window_size*2)
print(model_name)
else:
window_size = conf['window_size']
print("window size: ", window_size)
###############################################################################################################
# Load the model
###############################################################################################################
model = models.get_model(model_name, n_classes, n_time, embedding_dim=embedding_dim, n_layer=n_layer, channels=channels)
model = model.double()
model_path = os.path.join(experiment_dir, 'best_model.ckpt')
model.load_state_dict(torch.load(model_path))
model = model.cuda()
model.eval()
###############################################################################################################
# Compute the prototype and query embeddings
###############################################################################################################
wave, sample_rate = sed_utils.load_wave(wav_path)
pos_anns = stats_utils.get_positive_annotations(csv_path, n_shot, class_name='Q')
gap_anns = stats_utils.get_gap_annotations(csv_path, n_shot, class_name='Q')
query_anns = stats_utils.get_query_annotations(csv_path, n_shot, class_name='Q')
query_dataset = dcase_dataset.PrototypeDataset(wave, query_anns, window_size, hop_size, sample_rate, tf_transform, normalize=normalize_input, mean=mean, std=std)
neg_dataset = dcase_dataset.PrototypeDataset(wave, gap_anns, window_size, window_size//16, sample_rate, tf_transform, padding=padding, normalize=normalize_input, mean=mean, std=std)
pos_dataset = dcase_dataset.PrototypeDataset(wave, pos_anns, window_size, window_size//16, sample_rate, tf_transform, padding=padding, normalize=normalize_input, mean=mean, std=std)
query_loader = torch.utils.data.DataLoader(query_dataset, batch_size=64, shuffle=False, num_workers=8)
neg_loader = torch.utils.data.DataLoader(neg_dataset, batch_size=64, shuffle=False, num_workers=8)
pos_loader = torch.utils.data.DataLoader(pos_dataset, batch_size=64, shuffle=False, num_workers=8)
q_embeddings, q_probas = create_embeddings(model, query_loader)
q_embedding_times = np.array(query_dataset.times)
p_embeddings, _ = create_embeddings(model, pos_loader)
n_embeddings, _ = create_embeddings(model, neg_loader)
n_prototype = np.mean(n_embeddings, axis=0)
p_prototype = np.mean(p_embeddings, axis=0)
###############################################################################################################
# Classify query embeddings
###############################################################################################################
y_probas = []
for query in q_embeddings:
y_proba = probability_query(query, n_prototype, p_prototype)
y_probas.append(y_proba)
sorted_predicitions, sorted_intervals = zip(*sorted(list(zip(y_probas, q_embedding_times)), key=lambda x: x[1][0]))
sorted_q_probas, sorted_intervals = zip(*sorted(list(zip(q_probas, q_embedding_times)), key=lambda x: x[1][0]))
#############################################################
# Store probas
if save_probas:
basename = os.path.basename(csv_path).split('.')[0]
prediction_path = os.path.join(experiment_dir, 'predictions', '{}_predictions_hop_size_{}.npy'.format(basename, hop_size))
times_path = os.path.join(experiment_dir, 'predictions', '{}_times_hop_size_{}.npy'.format(basename, hop_size))
#base_prediction_path = os.path.join(experiment_dir, 'predictions', '{}_base_predictions.npy'.format(basename))
# save predictions
if not os.path.exists(os.path.dirname(prediction_path)):
os.makedirs(os.path.dirname(prediction_path))
print("saving prediction: ", prediction_path)
np.save(prediction_path, sorted_predicitions)
np.save(times_path, sorted_intervals)
#print("saving base prediction: ", base_prediction_path)
#np.save(base_prediction_path, sorted_q_probas)
#############################################################
# Get the 5th annotated positive event, and set the end of that
# event as the skiptime. (Remove all predictions before.)
ann_df = pd.read_csv(csv_path)
ann_df = ann_df.sort_values(by='Starttime', axis=0, ascending=True)
nth_event = select_nth_event_with_value(ann_df, 5, value='POS')
skiptime = nth_event['Endtime']
for y_proba, interval in zip(sorted_predicitions, sorted_intervals):
if y_proba > conf['classification_threshold']:
if not interval[0] < skiptime:
pos_events.append({
'Audiofilename' : os.path.basename(csv_path).replace('.csv', '.wav'),
'Starttime' : interval[0],
'Endtime' : interval[1],
})
pred_df = pd.DataFrame(pos_events)
return pred_df
def euclidean_distance(x1, x2):
return np.sqrt(np.sum(np.power(x1-x2, 2)))
def softmax(x, temp):
return np.exp(x/temp)/np.sum(np.exp(x/temp))
# TODO: should these be defined here?
def remove_less_than(pred_df, time):
events_to_drop = pred_df.index[pred_df['Endtime'] <= time].tolist()
return pred_df.drop(events_to_drop)
def select_events_with_value(df, value='POS'):
return df.index[df['Q'] == value].tolist()
def select_nth_event_with_value(df, n=5, value='POS'):
df_sorted = df.sort_values('Starttime')
df_pos_indexes = select_events_with_value(df_sorted, value)
nth_pos_index = df_pos_indexes[n-1]
nth_event = df.iloc[nth_pos_index]
return nth_event