-
Notifications
You must be signed in to change notification settings - Fork 3
/
P6_rasterPackage_solutions_II-v1.Rmd
255 lines (171 loc) · 6.53 KB
/
P6_rasterPackage_solutions_II-v1.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
---
title: "P6 Solutions to exercises with raster data (parts 3-4)"
author: "João Gonçalves"
date: "28 de Novembro de 2017"
output:
html_document:
self_contained: no
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_chunk$set(fig.path = "img/")
knitr::opts_chunk$set(fig.width = 5, fig.height = 4.5, dpi = 80)
```
Below are the solutions to [these](http://r-exercises.com/2018/02/07/exercises-with-raster-data-parts-3-4/) exercises on raster data (parts 3-4).
```{r P6_solution_ex1, message=FALSE, warning=FALSE}
####################
# #
# Exercise 1 #
# #
####################
library(raster)
## Create a folder named data-raw inside the working directory to place downloaded data
if(!dir.exists("./data-raw")) dir.create("./data-raw")
## If you run into download problems try changing: method = "wget"
download.file("https://raw.githubusercontent.com/joaofgoncalves/R_exercises_raster_tutorial/master/data/srtm_pnpg.zip", "./data-raw/srtm_pnpg.zip", method = "auto")
# Unzip the data to the target folder
unzip("./data-raw/srtm_pnpg.zip", exdir = "./data-raw")
# Load data into R
rst <- raster("./data-raw/srtm_pnpg.tif")
# Create the extent object
extMask <- extent(c(xmin = 560640, xmax = 577390,
ymin = 4629790, ymax = 4646770))
# Mask the values to the extent
# Notice that the extent object is converted to SpatialPolygons
# to be used in mask function
rstMasked <- mask(rst, as(extMask,"SpatialPolygons"))
```
```{r P6_solution_ex2}
####################
# #
# Exercise 2 #
# #
####################
# Perform aggregation to multiple factors
rst2 <- aggregate(rst, fact = 2)
rst5 <- aggregate(rst, fact = 5)
rst10 <- aggregate(rst, fact = 10)
```
```{r P6_solution_ex3}
####################
# #
# Exercise 3 #
# #
####################
# Cut data by quantiles
rstReclassQuantiles <- cut(rst, breaks = quantile(values(rst)))
```
```{r P6_solution_ex4}
####################
# #
# Exercise 4 #
# #
####################
# Do k-means to elevation data
rstValues <- data.frame(elev = values(rst))
km <- kmeans(rstValues, centers = 5, iter.max = 50)
rstKM5 <- rst
values(rstKM5) <- km$cluster
```
```{r P6_solution_ex5}
####################
# #
# Exercise 5 #
# #
####################
# Calculate slope
rstSlope <- terrain(rst, opt = "slope", unit = "degrees", neighbors = 8)
cellStats(rstSlope, stat = function(x,...) quantile(x,probs=c(0.05,0.5,0.95),...))
```
```{r P6_solution_ex6}
####################
# #
# Exercise 6 #
# #
####################
## If you run into download problems try changing: method = "wget"
download.file("https://raw.githubusercontent.com/joaofgoncalves/R_exercises_raster_tutorial/master/data/CIVPARISH_PNPG.zip", "./data-raw/CIVPARISH_PNPG.zip", method = "auto")
unzip("./data-raw/CIVPARISH_PNPG.zip", exdir = "./data-raw")
rstCivPar <- raster("./data-raw/PNPG_CivilParishes.tif")
# Calculate zonal stats for elevation
zonElev <- zonal(rst, rstCivPar, fun=mean)
# Calculate zonal stats for slope
zonSlope <- zonal(rstSlope, rstCivPar, fun=mean)
# Zone with average highest elevation
zonElev[which.max(zonElev[,2]), ]
# Zone with highest average topographic roughness/heterogeneity
zonSlope[which.max(zonSlope[,2]), ]
```
```{r P6_solution_ex7}
####################
# #
# Exercise 7 #
# #
####################
set.seed(12345)
# Generate random points with uniform distribution bounded by the raster extent
xyRandPoints <- data.frame(x = runif(50, xmin(rst), xmax(rst)),
y = runif(50, ymin(rst), ymax(rst)))
# Convert the initial data frame into a SpatialPoints objects for clarity
xyRandPoints <- SpatialPoints(xyRandPoints, proj4string = crs(rst))
# Calculate the distance to points raster dataset
distPoints <- distanceFromPoints(rst, xyRandPoints)
# Calculate the mean
cellStats(distPoints, stat = mean)
```
```{r P6_solution_ex8-data-load, echo=TRUE, eval=FALSE}
####################
# #
# Exercise 8 #
# #
####################
## Create a folder named data-raw inside the working directory to place downloaded data
if(!dir.exists("./data-raw")) dir.create("./data-raw")
## If you run into download problems try changing: method = "wget"
download.file("https://raw.githubusercontent.com/joaofgoncalves/R_exercises_raster_tutorial/master/data/MODIS_EVI_TS_PGNP_MultiBand.zip", "./data-raw/MODIS_EVI_TS_PGNP_MultiBand.zip", method = "auto")
## Uncompress the zip file
unzip("./data-raw/MODIS_EVI_TS_PGNP_MultiBand.zip", exdir = "./data-raw")
```
```{r P6_solution_ex8, fig.width=6, eval = FALSE, echo = TRUE}
# Load the raster data into a RasterBrick object
rst <- brick("./data-raw/MOD13Q1.2012_2016.PGNP_250m_EVI_16days.tif")
sgSmooth <- function(x, filtLen=21, ...) pracma::savgol(x, fl=filtLen, ...)
# Do Savitzy-Golay smoothing
rst_SGsmooth <- calc(rst, fun = sgSmooth)
# Extract data to test point
xyPt <- data.frame(x = 570760, y = 4628265)
eviTS1 <- extract(rst, xyPt)
eviTS2 <- extract(rst_SGsmooth, xyPt)
# Make plot comparing the original and smoothed EVI series
plot(1:115, eviTS1[1,], type = "l", lwd = 2, col="light grey",
main = "EVI time-series 2012-2016", xlab="Obs #index", ylab="EVI")
points(1:115, eviTS1[1,], col="dark grey")
lines(1:115, eviTS2[1,], col = "red", lwd = 2)
legend("topright",legend = c("Original","Smooth"),lwd=2,col = c("light grey","red"))
```
![](https://raw.githubusercontent.com/joaofgoncalves/R_exercises_raster_tutorial/master/img/P6_solution_ex8-1.png)
```{r P6_solution_ex9, eval = FALSE, echo = TRUE}
####################
# #
# Exercise 9 #
# #
####################
# Calculate the yearly mean with stack apply
# Recall that each year has 23 observations
rstYrMean <- stackApply(rst, fun=mean, indices = rep(1:5,each=23))
```
```{r P6_solution_ex10, eval = FALSE, echo = TRUE}
####################
# #
# Exercise 10 #
# #
####################
# Calculate the yearly mean with stack apply for the smoothed series
rstSGsmoothYrMean <- stackApply(rst_SGsmooth, fun=mean, indices = rep(1:5,each=23))
# Calculate squared differences
sqDiffs <- (rstYrMean - rstSGsmoothYrMean)^2
# Calculate the root mean of the squared differences
rstRMSE <- sqrt(calc(sqDiffs, fun = mean))
# Calculate the quantiles
cellStats(rstRMSE, quantile)
```