-
Notifications
You must be signed in to change notification settings - Fork 227
/
Copy pathfunctions.R
63 lines (55 loc) · 2.32 KB
/
functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
### ---------------
###
### Create: Jianming Zeng
### Date: 2018-08-10 17:07:49
### Email: jmzeng1314@163.com
### Blog: http://www.bio-info-trainee.com/
### Forum: http://www.biotrainee.com/thread-1376-1-1.html
### CAFS/SUSTC/Eli Lilly/University of Macau
### Update Log: 2018-08-10 First version
###
### ---------------
draw_h_v <- function(exprSet,need_DEG,n='DEseq2',group_list,logFC_cutoff){
## we only need two columns of DEG, which are log2FoldChange and pvalue
## heatmap
library(pheatmap)
choose_gene=head(rownames(need_DEG),50) ## 50 maybe better
choose_matrix=exprSet[choose_gene,]
choose_matrix[1:4,1:4]
choose_matrix=t(scale(t(log2(choose_matrix+1))))
## http://www.bio-info-trainee.com/1980.html
annotation_col = data.frame( group_list=group_list )
rownames(annotation_col)=colnames(exprSet)
pheatmap(choose_matrix,show_colnames = F,annotation_col = annotation_col,
filename = paste0(n,'_need_DEG_top50_heatmap.png'))
library(ggfortify)
df=as.data.frame(t(choose_matrix))
df$group=group_list
png(paste0(n,'_DEG_top50_pca.png'),res=120)
p=autoplot(prcomp( df[,1:(ncol(df)-1)] ), data=df,colour = 'group')+theme_bw()
print(p)
dev.off()
if(! logFC_cutoff){
logFC_cutoff <- with(need_DEG,mean(abs( log2FoldChange)) + 2*sd(abs( log2FoldChange)) )
}
# logFC_cutoff=1
need_DEG$change = as.factor(ifelse(need_DEG$pvalue < 0.05 & abs(need_DEG$log2FoldChange) > logFC_cutoff,
ifelse(need_DEG$log2FoldChange > logFC_cutoff ,'UP','DOWN'),'NOT')
)
this_tile <- paste0('Cutoff for logFC is ',round(logFC_cutoff,3),
'\nThe number of up gene is ',nrow(need_DEG[need_DEG$change =='UP',]) ,
'\nThe number of down gene is ',nrow(need_DEG[need_DEG$change =='DOWN',])
)
library(ggplot2)
g = ggplot(data=need_DEG,
aes(x=log2FoldChange, y=-log10(pvalue),
color=change)) +
geom_point(alpha=0.4, size=1.75) +
theme_set(theme_set(theme_bw(base_size=20)))+
xlab("log2 fold change") + ylab("-log10 p-value") +
ggtitle( this_tile ) + theme(plot.title = element_text(size=15,hjust = 0.5))+
scale_colour_manual(values = c('blue','black','red')) ## corresponding to the levels(res$change)
print(g)
ggsave(g,filename = paste0(n,'_volcano.png'))
dev.off()
}