-
Notifications
You must be signed in to change notification settings - Fork 3
/
tmp.py
429 lines (361 loc) · 18.8 KB
/
tmp.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
import numpy as np
import torch.nn as nn
import torch
import torch.nn.functional as F
import torch_scatter
# import spconv
import spconv.pytorch as spconv
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from utils.lovasz_losses import lovasz_softmax
import ocnn
from ocnn.octree import Octree
from ocnn.octree import Points
from typing import Optional, List, Dict
from networks.PointMamba import PointMamba
class BasicBlock(spconv.SparseModule):
def __init__(self, C_in, C_out, indice_key):
super(BasicBlock, self).__init__()
self.layers_in = spconv.SparseSequential(
spconv.SubMConv3d(C_in, C_out, 1, indice_key=indice_key, bias=False),
nn.BatchNorm1d(C_out),
)
self.layers = spconv.SparseSequential(
spconv.SubMConv3d(C_in, C_out, 3, indice_key=indice_key, bias=False),
nn.BatchNorm1d(C_out),
nn.LeakyReLU(0.1),
spconv.SubMConv3d(C_out, C_out, 3, indice_key=indice_key, bias=False),
nn.BatchNorm1d(C_out)
)
self.relu2 = spconv.SparseSequential(
nn.LeakyReLU(0.1)
)
def forward(self, x):
identity = self.layers_in(x)
out = self.layers(x)
output = spconv.SparseConvTensor(sum([i.features for i in [identity, out]]),
out.indices, out.spatial_shape, out.batch_size)
output.indice_dict = out.indice_dict
output.grid = out.grid
return self.relu2(output)
def make_layers_sp(C_in, C_out, blocks, indice_key):
layers = []
layers.append(BasicBlock(C_in, C_out, indice_key))
for _ in range(1, blocks):
layers.append(BasicBlock(C_out, C_out, indice_key))
return spconv.SparseSequential(*layers)
def scatter(x, idx, method, dim=0):
if method == "max":
return torch_scatter.scatter_max(x, idx, dim=dim)[0]
elif method == "mean":
return torch_scatter.scatter_mean(x, idx, dim=dim)
elif method == "sum":
return torch_scatter.scatter_add(x, idx, dim=dim)
else:
print("unknown method")
exit(-1)
def gather(x, idx):
"""
:param x: voxelwise features
:param idx:
:return: pointwise features
"""
return x[idx]
def voxel_sem_target(point_voxel_coors, sem_label):
"""make sparse voxel tensor of semantic labels
Args:
point_voxel_coors(N, bxyz): point-wise voxel coors
sem_label(N, ): point-wise semantic label
Return:
unq_sem(M, ): voxel-wise semantic label
unq_voxel(M, bxyz): voxel-wise voxel coors
"""
voxel_sem = torch.cat([point_voxel_coors, sem_label.reshape(-1, 1)], dim=-1)
unq_voxel_sem, unq_sem_count = torch.unique(voxel_sem, return_counts=True, dim=0)
unq_voxel, unq_ind = torch.unique(unq_voxel_sem[:, :4], return_inverse=True, dim=0)
label_max_ind = torch_scatter.scatter_max(unq_sem_count, unq_ind)[1]
unq_sem = unq_voxel_sem[:, -1][label_max_ind]
return unq_sem, unq_voxel
class SFE(spconv.SparseModule):
def __init__(self, in_channels, out_channels, layer_name, layer_num=1):
super().__init__()
self.spconv_layers = make_layers_sp(in_channels, out_channels, layer_num, layer_name)
def forward(self, inputs):
conv_features = self.spconv_layers(inputs)
return conv_features
class SGFE(nn.Module):
def __init__(self, input_channels, output_channels, reduce_channels, name, p_scale=[2, 4, 6, 8]):
super().__init__()
self.inplanes = input_channels
self.input_channels = input_channels
self.output_channels = output_channels
self.name = name
self.feature_reduce = nn.Linear(input_channels, reduce_channels)
self.pooling_scale = p_scale
self.fc_list = nn.ModuleList()
self.fcs = nn.ModuleList()
for _, _ in enumerate(self.pooling_scale):
self.fc_list.append(nn.Sequential(
nn.Linear(reduce_channels, reduce_channels//2),
nn.ReLU(),
))
self.fcs.append(nn.Sequential(nn.Linear(reduce_channels//2, reduce_channels//2)))
self.scale_selection = nn.Sequential(
nn.Linear(len(self.pooling_scale) * reduce_channels//2,
reduce_channels),nn.ReLU(),
)
self.fc = nn.Sequential(nn.Linear(reduce_channels//2, reduce_channels//2, bias=False),
nn.ReLU(inplace=False))
self.out_fc = nn.Linear(reduce_channels//2, reduce_channels, bias=False)
self.linear_output = nn.Sequential(
nn.Linear(2 * reduce_channels, reduce_channels, bias=False),
nn.ReLU(),
nn.Linear(reduce_channels, output_channels),
)
def forward(self, coords_info, input_data, output_scale, input_coords=None, input_coords_inv=None):
reduced_feature = F.relu(self.feature_reduce(input_data))
output_list = [reduced_feature]
for j, ps in enumerate(self.pooling_scale):
index = torch.cat([input_coords[:, 0].unsqueeze(-1),
(input_coords[:, 1:] // ps).int()], dim=1)
unq, unq_inv = torch.unique(index, return_inverse=True, dim=0)
fkm = scatter(reduced_feature, unq_inv, method="mean", dim=0)
att = self.fc_list[j](fkm)[unq_inv]
out = ( att)
output_list.append(out)
scale_features = torch.stack(output_list[1:], dim=1)
feat_S = scale_features.sum(1)
feat_Z = self.fc(feat_S)
attention_vectors = [fc(feat_Z) for fc in self.fcs]
attention_vectors = torch.sigmoid(torch.stack(attention_vectors, dim=1))
scale_features = self.out_fc(torch.sum(scale_features * attention_vectors, dim=1))
output_f = torch.cat([reduced_feature, scale_features], dim=1)
proj = self.linear_output(output_f)
proj = proj[input_coords_inv]
index = torch.cat([coords_info[output_scale]['bxyz_indx'][:, 0].unsqueeze(-1),
torch.flip(coords_info[output_scale]['bxyz_indx'], dims=[1])[:, :3]], dim=1)
unq, unq_inv = torch.unique(index, return_inverse=True, dim=0)
tv_fmap = scatter(proj, unq_inv, method="max", dim=0)
return tv_fmap, unq, unq_inv
class Points:
def __init__(self, points, batch_size=1, normals=None, features=None):
self.points = points # 点云数据
self.batch_size = batch_size # 批次大小
self.device = points.device # 设备信息
self.normals = normals
self.features = features
@property
def batch_id(self):
# 如果批次大小为1,batch_id可以是None或者一个全零的张量
# 根据您的具体需求调整
return torch.zeros(self.points.shape[0], dtype=torch.int64, device=self.device)
class SemanticBranch(nn.Module):
def __init__(self, sizes=[256, 256, 32], nbr_class=19, init_size=32, class_frequencies=None, phase='trainval'):
super().__init__()
self.class_frequencies = class_frequencies
self.sizes = sizes
self.nbr_class = nbr_class
# self.conv1_block = SFE(init_size, init_size, "svpfe_0")
# self.conv2_block = SFE(64, 64, "svpfe_1")
# self.conv3_block = SFE(128, 128, "svpfe_2")
# self.proj1_block = SGFE(input_channels=init_size, output_channels=64,\
# reduce_channels=init_size, name="proj1")
# self.proj2_block = SGFE(input_channels=64, output_channels=128,\
# reduce_channels=64, name="proj2")
# self.proj3_block = SGFE(input_channels=128, output_channels=256,\
# reduce_channels=128, name="proj3")
# 使用 PointMamba 提取特征
self.conv1_block = PointMamba(in_channels=init_size, channels=[32,64,128], num_blocks=[2,2,18],drop_path=0.5, nempty=True, stem_down=2, \
fpn_channel=168, head_drop=[0.5, 0.5])
self.conv2_block = PointMamba(in_channels=64, channels=[32,64,128], num_blocks=[2,2,18],drop_path=0.5, nempty=True, stem_down=2, \
fpn_channel=168, head_drop=[0.5, 0.5])
self.conv2_block = PointMamba(in_channels=128, channels=[32,64,128], num_blocks=[2,2,18],drop_path=0.5, nempty=True, stem_down=2, \
fpn_channel=168, head_drop=[0.5, 0.5])
# 修改 SGFE 模块,接收 PointMamba 提取的特征
self.proj1_block = SGFE(input_channels=init_size, output_channels=64, reduce_channels=init_size, name="proj1")
self.proj2_block = SGFE(input_channels=64, output_channels=128, reduce_channels=64, name="proj2")
self.proj3_block = SGFE(input_channels=128, output_channels=256, reduce_channels=128, name="proj3")
self.phase = phase
if phase == 'trainval':
num_class = self.nbr_class # SemanticKITTI: 19
self.out2 = nn.Sequential(
nn.Linear(64, 64, bias=False),
nn.BatchNorm1d(64, ),
nn.LeakyReLU(0.1),
nn.Linear(64, num_class)
)
self.out4 = nn.Sequential(
nn.Linear(128, 64, bias=False),
nn.BatchNorm1d(64, ),
nn.LeakyReLU(0.1),
nn.Linear(64, num_class)
)
self.out8 = nn.Sequential(
nn.Linear(256, 64, bias=False),
nn.BatchNorm1d(64, ),
nn.LeakyReLU(0.1),
nn.Linear(64, num_class)
)
def bev_projection(self, vw_features, vw_coord, sizes, batch_size):
unq, unq_inv = torch.unique(
torch.cat([vw_coord[:, 0].reshape(-1, 1), vw_coord[:, -2:]], dim=-1).int(), return_inverse=True, dim=0)
bev_fea = scatter(vw_features, unq_inv, method='max')
bev_dense = spconv.SparseConvTensor(bev_fea, unq.int(), sizes[-2:], batch_size).dense() # B, C, H, W
return bev_dense
def get_input_feature(self, octree):
# Check if the 'normals' attribute exists and is not None
if hasattr(self, 'normals') and self.normals is not None:
octree_feature = ocnn.modules.InputFeature(feature="NDF", nempty=True)
data = octree_feature(octree)
return data
else:
# Handle the case when 'normals' attribute does not exist or is None
# Return an empty tensor or a default value
return torch.tensor([])
def process_batch(self, coord, depth, full_depth):
def points2octree(points_obj):
# 确保已经有了ocnn库的正确导入和使用
octree = ocnn.octree.Octree(depth, full_depth)
octree.build_octree(points_obj)
return octree
# 确保 coord 是在正确的设备上(例如 CUDA 设备)
coord = coord.cuda(non_blocking=True)
# 封装 coord 为 Points 类的实例
points_obj = Points(points=coord, batch_size=1)
#points_obj.points = points_obj.points.to('cuda:0')
# 生成八叉树
octree = points2octree(points_obj)
#octree.construct_all_neigh()
# 返回八叉树
return octree
# def process_batch(self, batch):
# def points2octree(points):
# octree = ocnn.octree.Octree(8, 2)
# octree.build_octree(points)
# return octree
# if 'octree' in batch:
# batch['octree'] = batch['octree'].cuda(non_blocking=True)
# batch['coord_ind'] = batch['coord_ind'].cuda(non_blocking=True)
# else:
# #points = [pts.cuda(non_blocking=True) for pts in batch['points']]
# # 假设 batch['coord_ind'] 是一个形状为 [N, 4] 的张量
# coord_ind = batch['coord_ind']
# # 按批次索引对点云数据进行分组
# points_by_batch = defaultdict(list)
# for i in range(coord_ind.shape[0]):
# batch_idx = coord_ind[i, 0].item()
# point = coord_ind[i, 1:4]
# points_by_batch[batch_idx].append(point)
# # 为每个分组创建一个 Points 对象
# points_list = []
# for batch_idx, points in points_by_batch.items():
# points_tensor = torch.stack(points) # 将点列表转换为张量
# points_obj = Points(points=points_tensor, batch_size=1)
# points_list.append(points_obj)
# import pdb
# pdb.set_trace()
# octrees = [points2octree(pts) for pts in points_list]
# octree = ocnn.octree.merge_octrees(octrees)
# octree.construct_all_neigh()
# batch['coord_ind'] = ocnn.octree.merge_points(points_list)
# batch['octree'] = octree
# return batch
def forward_once(self, vw_features, coord_ind, full_coord, pw_label, info):
batch_size = info['batch']
if pw_label is not None:
pw_label = torch.cat(pw_label, dim=0)
# Convert voxel coordinates to octree
coord = torch.cat([coord_ind[:, 0].reshape(-1, 1), torch.flip(coord_ind, dims=[1])[:, :3]], dim=1)
coord = coord[:, 1:]
depth = 6
octree = self.process_batch(coord, depth=6, full_depth=2)
data = self.get_input_feature(octree)
import pdb
pdb.set_trace()
mamba_features1 = self.conv1_block(vw_features, octree, depth)
mamba_features2 = self.conv2_block(vw_features, octree, depth)
mamba_features3 = self.conv3_block(vw_features, octree, depth)
# Use PointMamba features in the rest of the forward pass
proj1_vw, vw1_coord, pw1_coord = self.proj1_block(info, mamba_features1, output_scale=2, input_coords=coord.int(),
input_coords_inv=full_coord)
proj1_bev = self.bev_projection(proj1_vw, vw1_coord, (np.array(self.sizes, np.int32) // 2)[::-1], batch_size)
proj2_vw, vw2_coord, pw2_coord = self.proj2_block(info, mamba_features2, output_scale=4, input_coords=vw1_coord.int(),
input_coords_inv=pw1_coord)
proj2_bev = self.bev_projection(proj2_vw, vw2_coord, (np.array(self.sizes, np.int32) // 4)[::-1], batch_size)
proj3_vw, vw3_coord, _ = self.proj3_block(info, mamba_features3, output_scale=8, input_coords=vw2_coord.int(),
input_coords_inv=pw2_coord)
proj3_bev = self.bev_projection(proj3_vw, vw3_coord, (np.array(self.sizes, np.int32) // 8)[::-1], batch_size)
# input_tensor = spconv.SparseConvTensor(
# vw_features, coord.int(), np.array(self.sizes, np.int32)[::-1], batch_size
# )
# conv1_output = self.conv1_block(input_tensor)
# proj1_vw, vw1_coord, pw1_coord = self.proj1_block(info, conv1_output.features, output_scale=2, input_coords=coord.int(),
# input_coords_inv=full_coord)
# proj1_bev = self.bev_projection(proj1_vw, vw1_coord, (np.array(self.sizes, np.int32) // 2)[::-1], batch_size)
# conv2_input_tensor = spconv.SparseConvTensor(
# proj1_vw, vw1_coord.int(), (np.array(self.sizes, np.int32) // 2)[::-1], batch_size
# )
# conv2_output = self.conv2_block(conv2_input_tensor)
# proj2_vw, vw2_coord, pw2_coord = self.proj2_block(info, conv2_output.features, output_scale=4, input_coords=vw1_coord.int(),
# input_coords_inv=pw1_coord)
# proj2_bev = self.bev_projection(proj2_vw, vw2_coord, (np.array(self.sizes, np.int32) // 4)[::-1], batch_size)
# conv3_input_tensor = spconv.SparseConvTensor(
# proj2_vw, vw2_coord.int(), (np.array(self.sizes, np.int32) // 4)[::-1], batch_size
# )
# conv3_output = self.conv3_block(conv3_input_tensor)
# proj3_vw, vw3_coord, _ = self.proj3_block(info, conv3_output.features, output_scale=8, input_coords=vw2_coord.int(),
# input_coords_inv=pw2_coord)
# proj3_bev = self.bev_projection(proj3_vw, vw3_coord, (np.array(self.sizes, np.int32) // 8)[::-1], batch_size)
if self.phase == 'trainval':
index_02 = torch.cat([info[2]['bxyz_indx'][:, 0].unsqueeze(-1),
torch.flip(info[2]['bxyz_indx'], dims=[1])[:, :3]], dim=1)
index_04 = torch.cat([info[4]['bxyz_indx'][:, 0].unsqueeze(-1),
torch.flip(info[4]['bxyz_indx'], dims=[1])[:, :3]], dim=1)
index_08 = torch.cat([info[8]['bxyz_indx'][:, 0].unsqueeze(-1),
torch.flip(info[8]['bxyz_indx'], dims=[1])[:, :3]], dim=1)
vw_label_02 = voxel_sem_target(index_02.int(), pw_label.int())[0]
vw_label_04 = voxel_sem_target(index_04.int(), pw_label.int())[0]
vw_label_08 = voxel_sem_target(index_08.int(), pw_label.int())[0]
return dict(
mss_bev_dense = [proj1_bev, proj2_bev, proj3_bev],
mss_logits_list = [
[vw_label_02.clone(), self.out2(proj1_vw)],
[vw_label_04.clone(), self.out4(proj2_vw)],
[vw_label_08.clone(), self.out8(proj3_vw)]]
)
return dict(
mss_bev_dense = [proj1_bev, proj2_bev, proj3_bev]
)
def forward(self, data_dict, example):
if self.phase == 'trainval':
out_dict = self.forward_once(data_dict['vw_features'],
data_dict['coord_ind'], data_dict['full_coord'], example['points_label'], data_dict['info'])
all_teach_pair = out_dict['mss_logits_list']
class_weights = self.get_class_weights().to(device=data_dict['vw_features'].device, dtype=data_dict['vw_features'].dtype)
loss_dict = {}
for i in range(len(all_teach_pair)):
teach_pair = all_teach_pair[i]
voxel_labels_copy = teach_pair[0].long().clone()
voxel_labels_copy[voxel_labels_copy == 0] = 256
voxel_labels_copy = voxel_labels_copy - 1
res04_loss = lovasz_softmax(F.softmax(teach_pair[1], dim=1), voxel_labels_copy, ignore=255)
res04_loss2 = F.cross_entropy(teach_pair[1], voxel_labels_copy, weight=class_weights, ignore_index=255)
loss_dict["vw_" + str(i) + "lovasz_loss"] = res04_loss
loss_dict["vw_" + str(i) + "ce_loss"] = res04_loss2
return dict(
mss_bev_dense=out_dict['mss_bev_dense'],
loss=loss_dict
)
else:
out_dict = self.forward_once(data_dict['vw_features'],
data_dict['coord_ind'], data_dict['full_coord'], None, data_dict['info'])
return out_dict
def get_class_weights(self):
'''
Class weights being 1/log(fc) (https://arxiv.org/pdf/2008.10559.pdf)
'''
epsilon_w = 0.001 # eps to avoid zero division
weights = torch.from_numpy(1 / np.log(np.array(self.class_frequencies) + epsilon_w))
return weights