This is a MATLAB library to extract visual descriptors and implement a bag-of- visual-words pipeline from video sequences taken by multiple users in order to provide localisation.
The code is customised and ready to be used with the RSM dataset (http://rsm.bicv.org) but can be used on any sort of image sequences if the directory paths are correctly specified.
Current implemented descriptor extraction methods (description below):
LW_COLOR
, SIFT
, DSIFT
, SF_GABOR
, ST_GABOR
, ST_GAUSS
Current supported format of the sequences: jpg
Authors:
-
[Jose Rivera](http://joserivera.org/) (jose.rivera@imperial.ac.uk)
-
Ioannis Alexiou (i.alexiou@qmul.ac.uk)
-
Anil A. Bharath (a.bharath@imperial.ac.uk)
Web: http://www.bicv.org
Date: v4.1 11/2015
SIFT
, DSIFT
, VLAD
and kernel implementations require VLFEAT
Clustering requires INRIA's Yael K-means
Rename initialize.m.template
to initialize.m
cp initialize.m.template initialize.m
Run main.m
main
- Dependency paths: include the paths to the dependencies.
YAEL
: https://gforge.inria.fr/projects/yael/VLFEAT
: http://www.vlfeat.org/
A version of these libraries is included in the Downloads section of the repository
- Parameter selection.
Select your choice from the following parameters in the params structure before continuing:
params = struct(...
'descriptor', 'ST_GAUSS',... % SIFT, DSIFT, SF_GABOR, ST_GABOR, ST_GAUSS,
'corridors', 1:6,... % Corridors to run [1:6] (RSM v6.0)
'passes', 1:10,... % Passes to run [1:10] (RSM v6.0)
'trainingSet', [1:3,5], ...
'datasetDir', '/data/datasets/RSM/visual_paths/v6.0',... % The root path of the RSM dataset
'frameDir', 'frames_resized_w208p',... % Folder name where all the frames have been extracted.
'descrDir', ...
'/data/datasets/RSM/descriptors', ...
'dictionarySize', 400, ...
'dictPath', '/data/datasets/RSM/dictionaries', ...
'encoding', 'HA', ... % 'HA', 'VLAD', 'LLC'
'kernel', 'chi2', ... % 'chi2', 'Hellinger'
'kernelPath', '/data/datasets/RSM/kernels', ...
'metric', 'max', ...
'groundTruthPath', './ground_truth', ...
'debug', 1 ... % 1 shows waitbars, 0 does not.
);
These parameters are the following
- datasetDir: The root path of the RSM dataset
- corridors: Corridors to run [1:6] (RSM v6.0)
- passes: Passes to run [1:10] (RSM v6.0)
- trainingSet: training set to use for dictionary construction
- frameDir: Folder name where all the frames have been extracted.
- descrDir
- descriptor: Type of descriptors to be calculated. To choose from
- LW_COLOR: Lightweight spatio-temporal colour descriptor
- SIFT: keypoint based SIFT descriptors
- DSIFT: Dense SIFT
- SF_GABOR: Frame-based DAISY-like descriptors
- ST_GABOR: Spatio-temporal Gabors.
- ST_GAUSS: Spatio-temporal, Spatial Derivative, Temporal Gaussian
- dictionarySize: number of visual words (parameter k in k-means)
- dictPath: directory where to store the created dictionaries.
- encoding: encoding method
- kernel:
- kernelPath:
- metric:
- groundTruthPath:
- debug:
computeDescriptors(params);
- create_dictionaries (k-means vector quantization)
clusterDescriptors
% OR
clusterDescriptorsSparse (for Keypoint-SIFT)
- BOVW encoding (Hard assigment, VLAD, or LLC)
hovwEncoding
% Remember to modify the parameters of the encoding, which will automatically call
% encode_hovw_METHOD/encode_hovw_METHOD_sparse (for Keypoint-SIFT),
% where METHOD =
% HA, "Visual categorization with bags of keypoints", Dance et al., 2004,
% VLAD, "Aggregating local descriptors into a compact image representation", Jegou et al., 2010,
% LLC, "Locality-constrained Linear Coding for Image Classification", Wang et al., 2010.
- Kernels for histograms
runKernelHA
% OR
runKernelHellinger
- Run evaluation routine to add the error measurement to the kernels.
run_evaluation_nn_VW
- [Optional: Move kernels to one folder]
#!/bin/bash
cd /folder/to/kernels
mkdir all_chi2
find . -name *chi2*.mat -exec cp -vf {} all_chi2/ \; # if chi2 kernel
mkdir all_Hellinger
find . -name *Hellinger*.mat -exec cp -vf {} all_chi2/ \;
- Generate PDF results and plots with
results_generation.m