-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom-local-roaming_plotter.py
164 lines (123 loc) · 4.68 KB
/
random-local-roaming_plotter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# %% initial imports
import pandas as pd
import numpy as np
import matplotlib as mpl
import matplotlib.figure as figure
import matplotlib.colors as colors
from matplotlib.ticker import AutoMinorLocator
from IPython.display import display
mpl.rc('text', usetex=True)
mpl.rc('font', family='serif')
mpl.rc('font', size=9)
# %% data loading
# file with data from the experiment
# Note: header=6 is for NetLogo data
# experiment name
exp_desc = 'random-local-roaming'
# variables usd in the plots
v = ["neighborhood-type", "roaming-agents", "synergy-factor", "mean-cooperators1k"]
data = pd.read_csv(exp_desc + '.csv', header=6)
# data fram used for plots
df = pd.DataFrame(columns=v)
var0s = data[v[0]].unique()
var1s = data[v[1]].unique()
var2s = data[v[2]].unique()
for v0 in var0s:
for v1 in var1s:
for v2 in var2s:
df.loc[len(df.index)] = [
v0,
v1,
v2,
data[(data[v[0]] == v0) & (data[v[1]] == v1) & (data[v[2]] == v2)]['mean-cooperators1k'].mean()
]
# df = df.replace('nan', 0)
#%% plot
# leves for contour plot
# levels = list(map( lambda x : x/20, list(range(0,23))))
levels = [0,0.1,0.5,0.75,0.9,0.95,0.98, 1]
# color map for contour plot
# cmap = colors.LinearSegmentedColormap.from_list('', ['darkred', 'red', 'orange', 'yellow', 'darkgreen'])
# cmap = colors.LinearSegmentedColormap.from_list('', ['red', 'orange', 'white'])
# cmap = colors.ListedColormap( ['red', 'yellow', 'white'])
# cmap = colors.LinearSegmentedColormap.from_list('', ['red', 'white'])
# cmap = 'viridis'
plotColors = ['orange', 'red', 'tomato',
'yellow', 'palegreen', 'lightblue', 'white']
cmap, norm = colors.from_levels_and_colors(levels, plotColors)
# cmap ='Reds_r'
# contained for plotted data
plot_data = dict()
# one figure for all cases of v0
fig = figure.Figure(figsize=(6, 7))
for i, v0 in enumerate(var0s):
# Note: 3*2 is the number of cases for var0s
axs = fig.add_subplot(321+i);
plot_data[v0] = df[df[v[0]] == v0][[v[1], v[2], v[3]]].to_numpy()
axs.contour(
plot_data[v0].T[0].reshape((len(var1s),len(var2s))),
plot_data[v0].T[1].reshape((len(var1s),len(var2s))),
plot_data[v0].T[2].reshape((len(var1s),len(var2s))),
levels=levels[1::],
linestyles='dashed',
linewidths=.5,
colors = ['black']
)
im = axs.contourf(
plot_data[v0].T[0].reshape((len(var1s),len(var2s))),
plot_data[v0].T[1].reshape((len(var1s),len(var2s))),
plot_data[v0].T[2].reshape((len(var1s),len(var2s))),
levels=levels,
cmap = cmap,
norm = norm,
interpolation=None
)
axs.set_yticks([2.5,3,3.5,4,4.5,5,5.5,6])
axs.set_xticks([0.0,.2,.4,.6,.8,1.0])
if i in [0,2,4]:
axs.set_ylabel(r'synergy factor $r$')
# if i in [4,5]:
axs.set_xlabel(r'roaming agents participation $\delta$')
if i not in [0,2,4]:
axs.set_yticklabels([])
# axs.yaxis.grid(False, which='minor')
axs.yaxis.set_minor_locator(AutoMinorLocator(n=5))
axs.xaxis.set_minor_locator(AutoMinorLocator(n=4))
# if i not in [4,5]:
# axs.set_xticklabels([])
axs.set_title(str(v0))
# axs.text(0.5/2,6.6,r'$K$='+str(v0), ha='center')
# axs.set_xlabel(vl[1])
# if i == 0:
# axs.set_ylabel(vl[2])
# im = axs.matshow (plot_data[3].T[2].reshape(len(var1s), len(var2s)), cmap='Reds', norm=colors.Normalize(vmin=0, vmax=1))
axs.grid(True, which='major',linestyle='-.', linewidth=0.25, c='k', alpha=0.75)
# axs.grid(True, which='minor',linestyle=':', linewidth=0.25, c='k', alpha=0.5)
cbar_ax = fig.add_axes([0.125, 1.02, 0.8, 0.015])
cbar = fig.colorbar(im, cax=cbar_ax, orientation="horizontal")
cbar.set_ticklabels([str(l) for l in levels])
fig.tight_layout()
display(fig)
# %% saving
fName = "plots/plot_" + exp_desc + ".pdf"
print("[INFO] Saving " + fName)
fig.savefig(fName, format="pdf", bbox_inches='tight')
#%% min delta
data_md = dict()
data_max1 = dict()
data_max2 = dict()
thr1 = 0.95
thr2 = 0.99
for k in var0s:
data_md[k] = df[df[v[0]] == k][[v[1], v[2], v[3]]]
for k in var0s:
data_max1[k] = data_md[k][data_md[k]['mean-cooperators1k'] >= thr1 ]
data_max2[k] = data_md[k][data_md[k]['mean-cooperators1k'] >= thr2 ]
#min_delta1 = [min(data_max1[x]['roaming-agents']) for x in var0s]
#min_delta2 = [min(data_max2[x]['roaming-agents']) for x in var0s]
min_delta1 = [min(data_max1[x][data_max1[x]['synergy-factor'] == min(data_max1[x]['synergy-factor'])]['roaming-agents']) for x in var0s]
min_delta2 = [min(data_max2[x][data_max1[x]['synergy-factor'] == min(data_max2[x]['synergy-factor'])]['roaming-agents']) for x in var0s]
print(min_delta1)
print(min_delta2)